PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sputtering pressure influenced structural, electrical and optical properties of RF magnetron sputtered MoO3 films

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MoO3 films were deposited by RF magnetron sputtering technique on glass and silicon substrates held at 473 K by sputtering of metallic molybdenum target at an oxygen partial pressure of 4 x 10-2 Pa and at different sputtering pressures in the range of 2 Pa to 6 Pa. The influence of sputtering pressure on the structure and surface morphology, electrical and optical properties of the MoO3 thin films was studied. X-ray diffraction studies suggest that the films deposited at a sputtering pressure of 2 Pa were polycrystalline in nature with mixed phase of α- and β-phase MoO3, while those formed at sputtering pressure of 4 Pa and above were of a-phase MoO3. Scanning electron micrographs showed a decrement in the size of the particles and their shapes changed from needle like structure to dense films with the increase of sputtering pressure. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic vibration modes of Mo=O, Mo–O and Mo–O–Mo related to MoO3. Electrical resistivity of the MoO3 films decreased from 6.0 x 104 Ωcm to 2 X 104 Ω∙cm with an increase of sputtering pressure from 2 Pa to 6 Pa, respectively. Optical band gap of the films decreased from 3.12 eV to 2.86 eV with the increase of sputtering pressure from 2 Pa to 6 Pa, respectively.
Wydawca
Rocznik
Strony
41--47
Opis fizyczny
Bibliogr. 52 poz., tab., rys.
Twórcy
  • Department of Physics, S.B.V.R. Degree College, Badvel-516 227, India
  • Department of Physics, S.B.V.R. Degree College, Badvel-516 227, India
autor
  • Department of Physics, Sri Venkateswara University, Tirupati-517 502, India
Bibliografia
  • [1] TOUIHRI S., ARFAOUI A., TARCHOUNA Y.A., LABIDI M., AMLOUK J.C., BERNED E., Appl. Surf. Sci., 394 (2017), 414.
  • [2] NIVAS I., HEINZ K., THOMAS T., MATHIAS S., MAHADEVAN PILLAI V.P., Sens. Actuators B, 187 (2013), 611.
  • [3] MHAMDI A., LABIDI A., SOUISSI B., KAHLAOUI M., YUMAK A., BOUBAKER K., AMLOUK A., AMLOUK M., J. Alloy Compd., 639 (2015), 648.
  • [4] BUONO-CORE G.E., KAHN A.K., CASTILLO C., MUNOZ E., MANZUR C., CABELLO G., CHORNIK B., J. Non-Cryst. Solids, 387 (2014), 21.
  • [5] BAI S., CHEN C.H., TAIN Y., CHEN S., LUO R., LI D., ACHEN A., LIU C.C., Mater. Res. Bull., 64 (2015), 252.
  • [6] LI Y.X., SONG Z.X., JIANG F., SUN Q., WANG H.R., CHEN K., Ceram. Int., 42 (2016), 18318.
  • [7] CHEN J., WANG M., LIU X., ZHANG J., DING L., GAO L., LI Y., J. Alloy. Compd., 619 (2015), 406.
  • [8] GALATSIS K., LI Y.X., WLODARSKI W., KALANTARZADER K., Sensors Actuat. B, 77 (2001), 478.
  • [9] JULIEN C.M., Lithium Batteries: New Materials Development and Prospective, Pistonia Edition, North Holland, 1994.
  • [10] ZHOU L., YUAN L., ZOU J., YU C., Phys. C: Chem. C, 144 (2010), 21868.
  • [11] CHEN Y., LU C., XU I., MA Y., HOU W., ZHU J., Cryst. Eng. Commun., 12 (2010), 3740.
  • [12] MANIVEL A., LEE G.L., LEE C.Y., CHEN C.Y., CHEN JH., MA S.S., HORNG T.L., WU J.J., Mater. Res. Bull., 62 (2015), 184.
  • [13] SCARMINIO J., LOURENCO A., GORENSTEIN A., Thin Solid Films, 302 (1997), 66.
  • [14] SOBIRAJ R.T., HERMANN K., WITKO M., BLUME A., MESTL G., SCHLOGI R., Appl. Surf. Sci., 489 (2001), 107.
  • [15] LIN S.Y., WANG C.M., KAO S.K., CHEN Y.C., LIU C.C., Sol-Gel J. Sci. Technol., 53 (2010), 51.
  • [16] CHETURVEDI N., KUMAR SWAMY S., DUTTA V., Solar Energy, 137 (2016), 379.
  • [17] FAN X., FANG G., QIN P., SUN N., LIU N., HANG Q., CHENG F., YUAN L., ZHAO X., Phys J., D: Appl. Phys., 44 (2011), 045101.
  • [18] UPAMA M.B., WRIGHT M., ELUMALAI N.K., MAHAMUD M.A., WANG D., CHEN K.H., XU C., HAQUE F., UDDIN A., Curr. Appl. Phys., 17 (2017), 298.
  • [19] LIU R., XU C., BISWAS R., SHINAR J., SHINAR R., Appl. Phys. Lett., 99 (2011), 093305.
  • [20] ZADSAR M., FALLAH H.R., MAHMOODZADEH M.H., TABATABAEI S.V., Lumin. J. Sci., 132 (2012), 992.
  • [21] YANG H., KIM J., YAMAMATO K., HOSONO H., Org. Electronics, 46 (2017), 133.
  • [22] AL-KUHAILI M.F., AHMAD S.H.A., DURRANI S.M.A., FAIZ M.M., UL-HAMID A., Mater. Des., 73
  • (2015), 15.
  • [23] CHO J.M., LEE S.K., MOON S.J., JO J., SHIN W.S., Curr. Appl. Phys., 14 (2014), 1144.
  • [24] SENTHIL KUMAR R., ANANDA BABU G., MAHALINGAM T., RAVI G., Energy Chem. J., 25 (2016), 798.
  • [25] SABHAPATHI V.K., HUSSAIN MD.O., REDDY P.S., REDDY K.T.R.K., NAIDU B.S., UTHANNA S., REDDY P.J., Phys. Stat. Solidi A, 148 (1995), 167.
  • [26] AL-KUHAILI M.F., DURRANI S.M.A., BAKHTIARI I.A., AL-SHUKRI A.M., Opt. Commun., 283 (2010), 2857.
  • [27] PARDO A., TORRES J., Thin Solid Films, 520 (2012), 1709.
  • [28] QUINTANA A., VAREE A., GUERRERO M., SUNINACH S., BARO M.D., SORT J., PELLICER E., Electrochimica Acta, 173 (2015), 705.
  • [29] PATIL R.S., UPLANE M.D., PATIL P.S., Appl. Surf. Sci., 252 (2006), 8050.
  • [30] MARTINEZ H.M., TORRES J., LOPEZ CORRENO L.D., GARCIA M.E.R., Mater. Charact., 25 (2013), 253.
  • [31] PANDESWARI R., JEYAPRAKASH B.G., BIOSENS. Biochem., 53 (2014), 182.
  • [32] AFIFY H.H., HASSAN S.A., ABOUELSAYED A., DEMIAN S.E., ZAYED H.A., Thin Solid Films, 623 (2017), 40.
  • [33] BOUCHACHEM A., BOUZIDI C., BOUGHALMI R., OUERTENI R., KHLAOUI M., OUNI B., ELHOUICHET M., AMLOUK M., Ceram. Int., 40 (2014), 13427.
  • [34] MIAO Y., LU G., LIU X., GUO Y., WANG Y., GUO Y., MOL J.. Cat. A, 306 (2009), 17.
  • [35] DHANASANKAR M., PURUSHOTHAMAN K.K., MURALIDHARAN G., Appl. Surf. Sci., 257 (2011), 2074.
  • [36] MUTTA G.R., POPURI S.R., WILSON J.I.B., BENNET N.S., Solid State Sci., 61 (2016), 84.
  • [37] ARAVINDA L.S., NAGARAJA K.K., UDAYA BHAT K., R. AMACHANDRA BHAT B., J. Electroanal. Chem., 699 (2013), 28.
  • [38] SHIMIZU R., YAMAMOTO K., SUZUKI T.T., OHSAWA T., HITOSUGI T., Thin Solid Films, 595 (2015), 153.
  • [39] NIRUPAMA V. UTHANNA S., J. Mater. Sci: Mater. Electron., 27 (2016), 3668.
  • [40] CHENG F., FANG G., FAN X., HUANG H., ZHANG Q., QIN P., LEI H., Sol. Energ. Mater. Sol. C., 110 (2013), 63.
  • [41] GRETENER C., PERRENOUD J., KRANZ L., BAECHLER C., YOON S., ROMANYUK Y.E., BUECHELER S., TIWARI A.N., Thin Solid Films, 535 (2013), 193.
  • [42] SUBBARAYUDU S., MADHAVI V., UTHANNA S., Adv. Mater. Lett., 4 (2013), 637.
  • [43] BARNES M.C., KUMAR S., GREEN L., HUANG N.M., GERSON A.R., Surf. Coat. Technol., 190 (2005), 321.
  • [44] CULLITY B.D, STOCK S.R., Elements of X-Ray Diffraction, 3rd Ed., Prentice Hall Inc., New Jersey. 2001.
  • [45] YANG W.Q., WEI Z.R., ZHU X.H., YANG D.Y., Phys. Lett. A, 373 (2009), 3965.
  • [46] SRINIVASARAO S.R., RAJINIKANTH B., MUKHOPADHYAY P.K., Appl. Phys. A, 9 (2009), 985.
  • [47] NAZRI G.A., JULIEN C.M., Solid State Ionics, 133 (1992), 376.
  • [48] NIVAS I., VINOD KUMAR R., LETHY K.J., DETTY A.P., GANESAN V., SATHE V., MAHADEVAN PILLAI V.P., J. Phys. D: Appl. Phys., 42 (2009), 175305.
  • [49] NIRUPAMA V., GUNASEKHAR K.R., SREEDHAR B., UTHANNA S., Curr. Appl. Phys., 10 (2010), 272.
  • [50] SAIN T S., REDDY G.B., J. Appl. Phys., 98 (2005), 026104.
  • [51] TAUC J., Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974.
  • [52] LEE Y.J., NICHOLS W.T., KIM D.G., KIM Y.D., J. Phys. D: Appl. Phys., 42 (2009), 115419.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12ea5535-9b6e-4eb3-8275-f561bc79eb95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.