PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogical studies of the Maastrichtian Gerinya Claystone of the Patti Formation, southern Bida Basin, Nigeria: Implication for industrial application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mineralogical compositions of the Gerinya claystone, Patti Formation, Southern Bida Basin, Nigeria, were investigated to infer their sedimentological process and industrial application. Mineralogical analysis of the claystone was carried out using the X-ray diffraction (XRD) method. The diffractogram peaks aided the identification of the clay and non-clay minerals in the study area. The XRD showed kaolinite as the major clay mineral with compositions ranging from 10.8 - 67.6 wt%. The non-clay minerals were quartz, anatase, diopside, goethite, hematite, rutile, muscovite and microcline. Among the non-clay minerals, quartz had the highest percentage mineralogical composition of 21.2 to 83.4 wt%. The mineral assemblage is typical of a hot and humid climate where chemical alteration and hydrolysis of silicate minerals are severe. The sediments are of mafic and felsic crystalline rocks origin. The sediments are of low energy floodplain/interchannel depositional environment. The Gerinya claystone vary from low to high porosity and very low to low permeability. The claystone can be used as clay liners and as raw material for ceramic production. The application of the claystones in fertiliser production will require some processing. The claystone can be used for haemorrhage control in the pharmacological/medical sector. Although, the ingestion of the claystones could lead to dental damage and possible perforation of the sigmoid colon in the gastrointestinal tract.
Słowa kluczowe
Czasopismo
Rocznik
Strony
10--18
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Geology, University of Calabar, Calabar, Cross River, Nigeria
  • Department of Geology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
  • Department of Geology, Federal University Oye-Ekiti , Ekiti State, Nigeria
  • School of Public Health, University of Medical Science, Ondo State, Nigeria
Bibliografia
  • Abrahams, P.W., & Parsons, J.A. (1997). Geophagy in the tropic: an appraisal of three geophagic materials. Environmental Geochemistry and Health, 19, 19–22.
  • Aldega, L., Bigi, S., Carminati, E., Trippetta, F., Corrado, S., & Kavoosi, M.A. (2018). The zagros foldand- thrust belt in the fars province (Iran): II. thermal evolution. Marine and Petroleum Geology, 93, 376–390.
  • Aldega, L., Carminati, E., Scharf, A., Mattern, F., & Al-Wardi, M. (2017). Estimating original thickness and extent of the semail ophiolite in the eastern Oman Mountains by paleothermal indicators. Marine and Petroleum Geology, 84, 18–33.
  • Benson, C.H., Zhai, H., & Wang, X. (1994). Estimating hydraulic conductivity of clay liners. Journal of Geotechnical Engineering, ASCE, 2, 366–387.
  • Brand, C.E., De Jager, L., & Ekosse, G.E. (2010). Possible health eff ects associated with human geophagic practice: an overview. South African Medical Technology, 1, 11–13. doi/10.10520/EJC74222.
  • Corrado, S., Aldega, L., Celano, A.S., De Benedetti , A.A., & Giordano, G. (2014). Cap rock efficiency and fluid circulation of natural hydrothermal systems by means of XRD on clay minerals (Sutri, Northern Latium, Italy). Geothermics, 50, 180–188.
  • Cox , M.E. & Brown, P. (1998). Hydrothermal alteration mineralogy as an indicator of hidrology at the Ngahwa geothermal fi eld, New Zealand. Geothermics, 27, 259–270.
  • Daniel, D.E. (1993). Clay liners. In: Geotechnical Practice for Waste Disposal, (ed. David E. Daniel) Chapman & Hall, London, UK, 137–163. doi/10.1007/978-1-4615-3070-1.
  • Ekosse, G.E., De Jager, L., & Ngole, V.M. (2010). Traditional mining and mineralogy of geophagic clays from Limpopo and free state provinces, South Africa. African Journal of Biotechnology, 47, 8058–8067.
  • Geissler, P.W., Mwaniki, D., Thiong’O, F., & Friis, H. (1998). Geophagy as a risk factor for geohelminth infections: a longitudinal study of Kenyan primary school children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1, 7–11.
  • Grand View Research. (2020). Kaolin market size, share and trends analysis report by application (paper, ceramics, paint and coatings, fiber glass, plastic, rubber, cosmetics, pharmaceutical and medical) by region and segment forecasts, 2020 – 2027. report ID: 978-1-68038-337-9. (Accessed 22 March 2021) https://www.grandviewresearch.com/industry-analysis/kaolin-market
  • Hower, J., Eslinger, E., Hower, M.E., & Perry, E.A. (1976). Mechanism of burial metamorphism of argillaceous sediment: mineralogical and chemical evidence. Geological Society of America Bulletin, 5, 725–737.
  • Kawai, K., Saathoff , E., Antelman, G., Msamanga, G., & Fawzi, W.W. (2009). Geophagy (soil-eating) in relation to anaemia and helminth infection among HIV-infected pregnant women in Tanzania. The American Journal of Tropical Medicine and Hygiene, 1, 36–43.
  • Long, M., Zhang, B., Peng, S., Liao, J., Zhang, Y., Wang, J., Wang, M., Qin, B., Huang, J., Huang, J., Chen, X., & Yang, H. (2019). Interactions between two-dimensional nanoclay and blood cells in hemostasis. Materials Science and Engineering C, 105, 110081. doi: 10.1016/j.msec.2019.110081.
  • Mpuchane, S., Ekosse, G., Gashe, B., Morobe, I., & Coetzee, S. (2008). Mineralogy of southern African medicinal and cosmetic clays and their effects on the growth of selected test microorganisms. Fresenius Environment Bulletin, 15, 547–557.
  • Murray, H.H. (2007). Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite, and Common Clays, 1st ed.; Elsevier: Oxford, UK. 189. doi.org/ 978-0-444-51701-2.
  • National Fertilizer Company of Nigeria (NAFCON), 1985. Tender document for supply of kaolin from Nigeria sources, p 65. In: Akinola, O.O., & Obasi, R.A. (2014). Compositional characteristics and industrial potential of the lateritic clay deposit in Ara-Ijero Ekitiareas, southwestern Nigeria. International Journal of Scientific and Technology Research, 3, 304–311.
  • Nesbitt, H.W., & Young, G.M. (1989). Formation and diagenesis of weathering profiles; Journal of Geology, 97, 129–147. doi.org/10.1086/629290.
  • Obaje, N.G. (2009). Geology and mineral resources of Nigeria. Springer-Verlag Berlin Heidelberg, 221. doi.org/10.1007/978-3-540-92685-6.
  • Odewumi, S.C. (2013). Mineralogy and geochemistry of geophagic clays from Share area, northern Bida sedimentary basin, Nigeria. African Journal of Natural Science, 16, 87–98.
  • Ojo, O.J., & Akande, S.O. (2009). Sedimentology and depositional environments of the Maastrichtian Patti Formation, southeastern Bida Basin, Nigeria. Cretaceous Research, 30, 1415–1425.
  • Ojo O.J., & Akande S.O. (2020). A revised stratigraphy of the Bida Basin, Nigeria by Rahaman et al., (2019) [Journal of African Earth Sciences., 151, 67–81]: A rebuttal. Journal of African Earth Sciences, 172, 103983.
  • Okunlola, O.A., & Owoyemi, K.A. (2015). Compositional characteristics of geophagic clays of Southern Nigeria. Earth Science Research, 4(2), 10-15.
  • Olabode, S.O. (2016). Soft sediment deformation structures in the Maastrichtian Patti Formation, southern Bida Basin Nigeria: implications for the assessment of endogenic triggers in the Maastrichtian sedimentary record. Open Journal of Geology, 6, 410–438.
  • Oyebanjo, O., Ekosse, G., & Odiyo, J., (2020). Physico-Chemical, Mineralogical, and Chemical Characterisation of Cretaceous–Paleogene/Neogene Kaolins within Eastern Dahomey and Niger Delta Basins from Nigeria: Possible Industrial Applications. Minerals, 10, 670. doi:10.3390/min10080670.
  • Singh, P. (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.
  • Strazzera, B., Dondi, M., & Marsigli, M. (1997). Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247–266.
  • Velde, B., & Meunier A. (2008). The origin of clay minerals in soils and weathered rocks. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-540-75634-7.
  • Velde, B. (1992). Introduction to Clay Minerals. Dordrecht: Springer. doi.org/10.1007/978-94-011-2368-6.
  • Velde, B. (1995). Origin and Mineralogy of Clays. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-662-12648-6.
  • Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12e94291-82dc-4141-ba19-bee372b30e45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.