Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study successfully synthesized a combustion catalyst consisting of copper atoms anchored onto a carbon black support. The 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20), 1,1-diamino-2,2-dinitroethylene (FOX-7), cyclotetramethylene-tetranitramine, and ammonium perchlorate energetic materials were studied and analyzed using high-temperature pyrolysis process and catalytic oxidation thermal decomposition kinetics analysis. The research results indicate that the addition of the catalyst CB@Cu significantly reduces the activation energy during the pyrolysis process of energetic materials, leading to an earlier decomposition temperature and a significant catalytic effect. After adding catalyst CB@Cu, the endothermic peaks of the three energetic materials shifted toward lower temperatures, but the magnitude of the movement was relatively small. The maximum thermal decomposition temperature has been reduced by 3–5°C compared to that before the addition of the catalyst. At lower temperatures, the catalyst has a better catalytic effect on the energetic materials. The catalyst indicates the formation of electron transfer and the presence of metal Cu ligands, increasing the number of active sites with energetic materials, making the heat release of energetic materials more concentrated and increasing the degree of thermal decomposition.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
160--170
Opis fizyczny
BIbliogr. 24 poz., rys., tab.
Twórcy
autor
- School of Environment and Safety Engineering, North University of ChinaTaiyuan, China
autor
- School of Environment and Safety Engineering, North University of ChinaTaiyuan, China
Bibliografia
- [1] Chen, L., Ru, C., Zhang, H., Zhang, Y., Wang, H., Hu, X., et al., Progress in electrohydrodynamic atomization preparation of energetic materials with controlled microstructures, Molecules, 2022, 27(7): 2374, 10.3390/molecules27072374
- [2] Du, Y., Qu, Z., Wang, H., Cui, H., Wang, X., Review on the synthesis and performance for 1, 3, 4‐oxadiazole‐based energetic materials, Propellants Explos. Pyrotech., 2021, 46(6): 860–874, 10.1002/prep.202000318
- [3] Keshavarz, M.H., Ebadpour, R., Jafari, M., Reliable prediction of crystal density of high nitrogen-containing organic compounds as powerful, less sensitive, eco-friendly energetic materials for dependable assessment of their performance, Fluid Phase Equilib., 2023, 565: 113653, 10.1016/j.fluid.2022.113653
- [4] Zhang, J., Chen, G., Gong, X., Theoretical design of nitrogen-rich cages for energetic materials, Comput. Theor. Chem., 2022, 1210: 113659, 10.1016/j.comptc.2022.113659
- [5] Sinditskii, V.P., Serushkin, V.V., Kolesov, V.I., On the question of the energetic performance of TKX‐50, Propellants Explos. Pyrotech., 2021, 46(10): 1504–1508, 10.1002/prep.202100173
- [6] Wang, J., Chen, S., Jin, S., Shu, Q., Huang, F., Ruan, J., et al., Thermal hazard assessment of TKX-50-based melt-cast explosive, Def. Technol., 2022, 18(9): 1546–1551, 10.1016/j.dt.2021.09.016
- [7] Wang, X., Hao, G., Xiao, L., Hu, Y., Zhang, G., Wang, S., et al., Review on the thermal decomposition of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50), Thermochim. Acta, 2023, 719: 179393, 10.1016/j.tca.2022.179393
- [8] Fu, Y., Wang, X., Zhu, Y., Xu, B., Liu, Z., Chen, L., et al., Thermal characteristics of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate in contact with nitrocellulose/nitroglycerine under continuous heat flow, Arab. J. Chem., 2022, 15(1): 103466, 10.1016/j.arabjc.2021.103466
- [9] Tang, Z., Deng, Z., Gao, X., Wang, Y., Xue, Y., Meng, M., et al., A series of crumpled ball-like metal oxide-based catalysts enabled by aerosol synthesis, J. Alloy. Compd., 2023, 947: 169392, 10.1016/j.jallcom.2023.169392
- [10] Wan, Y., Fang, F., Sun, R., Zhang, J., Chang, K., Metal oxide semiconductors for photothermal catalytic CO2 hydrogenation reactions: recent progress and perspectives, Acta Phys-Chim. Sin., 2023, 39(11): 2212042, 10.3866/pku.whxb202212042
- [11] Wang, J., Guo, Z., Chen, S., Chen, Y., Qin, Z., Xu, K., High dispersity and ultralight PVP-mediated Al/MFe2O4/g-C3N4 (M = Cu, Mg, Ni) nanothermites synthesized by a novel sol-freeze-drying technology, Adv. Powder Technol., 2023, 34(3): 103976, 10.1016/j.apt.2023.103976
- [12] Kumar, A., Reddy, S.N., Study the catalytic effect on pyrolytic behavior, thermal kinetic and thermodynamic parameters of Ni/Ru/Fe-impregnated sugarcane bagasse via thermogravimetric analysis, Ind. Crop. Prod., 2022, 178: 114564, 10.1016/j.indcrop.2022.114564
- [13] Alves, J.L.F., da Silva, J.C.G., Mumbach, G.D., Alves, R.F., Di Domenico, M., Marangoni, C., Physicochemical properties, pyrolysis kinetics, thermodynamic parameters of activation, and evolved volatiles of mango seed waste as a bioenergy feedstock: a potential exploration, Thermochim. Acta, 2023, 725: 179519, 10.1016/j.tca.2023.179519
- [14] Sahoo, A., Kumar, S., Mohanty, K., Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer, Renew. Energy, 2021, 165: 261–277, 10.1016/j.renene.2020.11.011
- [15] Wang, Y.R., Liu, J.P., Chen, L.P., Shao, X.Y., Xu, S., Thermal decomposition characteristics and runaway boundary conditions of HATO at adiabatic and high pressure situations, Process. Saf. Environ. Prot., 2022, 167: 601–608, 10.1016/j.psep.2022.09.045
- [16] Cao, C., Liu, H., Zhang, D., Zhu, K., Li, A., Wang, L., et al., Investigation on the decomposition mechanism and kinetic behavior of 5-aminotetrazole with metal oxide produced by added coolants, Fuel, 2021, 303: 121315, 10.1016/j.fuel.2021.121315
- [17] Tolmachoff, E.D., Baldwin, L.C., Essel, J.T., Hedman, T.D., Kalman, S.E., Kalman, J., Effects of select metal oxides on the onset, rate and extent of low temperature ammonium perchlorate decomposition, J. Energ. Mater., 2022, 40(4): 429–444, 10.1080/07370652.2021.1895914
- [18] Wang, J., Chen, S., Wang, W., Zhao, F., Xu, K., Energetic properties of new nanothermites based on in situ MgWO4-rGO, CoWO4-rGO and Bi2WO6-rGO, Chem. Eng. J., 2022, 431: 133491, 10.1016/j.cej.2021.133491
- [19] Hu, L., Liu, Y., He, D., Yang, Y., Gong, S., Guang, C., et al., Study of molecular perovskite (H2dabco)[NH4(ClO4)3]/carbon nanotubes energetic composite, Cent. Eur. J. Energ. Mater., 2022, 19(1): 91–105, 10.22211/cejem/147766
- [20] Wu, R., Sun, J., Ma, X., Bao, E., Du, X., Xu, C., et al., Uniform MgCo2O4 porous nanoflakes and nanowires with superior electrochemical performance for asymmetric supercapacitors, J. Alloy. Compd., 2021, 884: 161087, 10.1016/j.jallcom.2021.161087
- [21] Cai, J., Ding, Y., Li, J., Hou, L., Zhao, S., Zhang, Y., Rational design of CNTs@ FeCo2O4 as anode materials for lithium-ion batteries, J. Mater. Sci. Mater Electron., 2022, 33(16): 12832–12845, 10.1007/s10854-022-08228-3
- [22] Chen, T., Hu, Y., Zhang, C., Gao, Z., Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate, Def. Technol., 2021, 17(4): 1471–1485, 10.1016/j.dt.2020.08.004
- [23] Tang, X., Lou, Y., Zhao, R., Tang, B., Guo, W., Guo, Y., et al., Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation, Chem. Eng. J., 2021, 418: 129398, 10.1016/j.cej.2021.129398
- [24] Chen, Y., Huang, N., Liang, Y., Preparation of CeO2/Cu-MOF/GO composite for efficient electrocatalytic oxygen evolution reaction, Ionics, 2021, 27(10): 4347–4360, 10.1007/s11581-021-04173-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12e685db-e8d0-4e29-adc3-4c84d07a550a