PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local diagnostic reference levels in diagnostic and therapeutic pediatric cardiology at a specialist pediatric hospital in South Africa

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Children may be at a higher risk of experiencing the detrimental effects of ionizing radiation arising from medical radiation imaging. Dose optimisation is therefore recommended to provide assurance that their exposure is as low as reasonably achievable. To this end, periodic assessment of dose levels and establishment of Local Diagnostic Reference Levels (LDRLs) in medical facilities is necessary. There is a general paucity in the literature of data pertaining to dose levels in pediatric interventional radiology. This study establishes LDRLs in diagnostic and therapeutic heart catheterization procedures at a specialist pediatric hospital in a resource constrained country. Material and methods: Dose indicators from actual patient procedures were collected from the archive and analyzed retrospectively to determine the median, 25th, and 75th percentiles of the total Air Kerma Area Product (KAP), Cumulative Air Kerma (CAK), total Fluoroscopy Time (FT), and a total number of Cine Images (CI) of selected interventional procedures. The dose indicators were also age-stratified into five age groups defined by the International Commission on Radiation Protection publication 135. The results were compared to values available from similar studies in the literature to benchmark our dose levels. Local Dose Reference Levels were set as the 75th percentile values. Results: For diagnostic procedures (n = 80), the 75th percentiles of KAP, CAK, FT, and CI were 4.0 Gy·cm2, 31.5 mGy, 14.3 min, and 315 frames, respectively and 3.2 Gy·cm2, 30.5 mGy, 17.5 min, and 606 frames, respectively for therapeutic procedures (n = 143). Conclusions: The LDRLs from this study did not vary significantly from those published in the literature, suggesting that practices at our center were comparable to international norms. Regular reviews of the LDRLs must be conducted to check that the dose levels do not deviate considerably.
Rocznik
Strony
180--187
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Division of Medical Physics, Groote Schuur Hospital/University of Cape Town, South Africa
  • Department of Radiology, Red Cross War Memorial Children's Hospital, South Africa
Bibliografia
  • 1. Chaudry G. Paediatric interventional radiology. South African Journal of Radiology. 2015;20(1):a940. https://doi.org/10.4102/sajr.v20i1.940
  • 2. Donaldson JS. Paediatric interventional radiology: a maturing subspecialty. Paediatric Radiology. 2017;47:649-650. https://doi.org/10.1007/s00247-017-3797-x
  • 3. Petrover D, Silvera J, De Baere T, Vigan M, Hakime A. Percutaneous ultrasound-guided carpal tunnel release: study upon clinical efficacy and safety. Cardiovascular and Interventional Radiology. 2017;40(4):568-575. https://doi.org/10.1007/s00270-016-1545-5
  • 4. Song KD, Lee MW, Rhim H, et al. Percutaneous US/MRI fusion–guided radiofrequency ablation for recurrent subcentimeter hepatocellular carcinoma: technical feasibility and therapeutic outcomes. Radiology. 2018;288(3):878-886. https://doi.org/10.1148/radiol.2018172743
  • 5. Miller DL. Overview of contemporary interventional fluoroscopy procedures. Health Physics. 2008;95(5):638-644. https://doi.org/10.1097/01.HP.0000326341.86359.0b
  • 6. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP. 2007;37:2-4. https://doi.org/10.1093/rpd/ncn187
  • 7. De Gonzalez AB, Salotti J, McHugh K, et al. Relationship between paediatric CT scans and subsequent risk of leukaemia and brain tumours: assessment of the impact of underlying conditions. British Journal of Cancer. 2016;4(2016):388-394. https://doi.org/10.1038/bjc.2015.415
  • 8. Goske MJ, Applegate KE, Boylan J, et al. The Image Gently campaign: working together to change practice. AJR American Journal of Roentgenology. 2008;190(2):237-274. https://doi.org/10.2214/AJR.07.3526
  • 9. ICRP. Radiological Protection and Safety in Medicine. ICRP Publication 73. Annals of the ICRP. 1996;26(2) https://doi.org/10.1016/S0146-6453(00)89195-2
  • 10. SAHPRA. Requirements for licence holders with respect to quality control tests for diagnostic x-ray imaging systems. 2015. Accessed April 2022. https://sites.google.com/site/radiationcontroldoh/
  • 11. ICRP. ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging. Annals of the ICRP. 2017;46(1) https://doi.org/10.1177/0146645317717209
  • 12. Nickoloff EL. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more. Radiographics. 2011;31(2):591-602. https://doi.org/10.1148/rg.312105185
  • 13. Ortenzia O, Trojani V, Bertolini M, Nitrosi M, Ghetti C. Radiation dose reduction and static image quality assessment using a channelized hotelling observer on an angiography system upgraded with clarity IQ. Biomedical Physics & Engineering Express. 2020;6(2):025008. https://doi.org/10.1088/2057-1976/ab73f6
  • 14. Social Science Statistics. https://www.socscistatistics.com/tests/mannwhitney/default2.aspx
  • 15. Ubeda C, Miranda P, Vano E. Local patient dose diagnostic reference levels in paediatric interventional cardiology in Chile using age bands and patient weight values. Medical Physics. 2015;42(2):615-622. https://doi.org/10.1118/1.4905116
  • 16. Vano E, De Gonzalez AB, Ten JI, et al. Skin dose and dose–area product values for interventional cardiology procedures. The British Journal of Radiology. 2001;74(877):48-55. https://doi.org/10.1259/bjr.74.877.740048
  • 17. Neil S, Padgham C, Martin C J. A study of the relationship between peak skin dose and cumulative air kerma in interventional neuroradiology and cardiology. Journal of Radiological Protection. 2010;30(4):659. https://doi.org/10.1088/0952-4746/30/4/002
  • 18. Valentin J. Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Annals of the ICRP. 2000;30(2):7-67. https://doi.org/10.1016/S0146-6453(01)00004-5
  • 19. Balaguru D, Rodriguez M, Leon S, Wagner LK, Beasley CW, Sultzer A. Comparison of skin dose measurement using nanoDot® dosimeter and machine readings of radiation dose during cardiac catheterization in children. Annals of Paediatric Cardiology. 2018;11(1):12-16. https://doi.org/10.4103/apc.APC_86_17
  • 20. Tavare AN, Wigham A, Hadjivassilou A, et al. Use of transabdominal ultrasound-guided transjugular portal vein puncture on radiation dose in transjugular intrahepatic portosystemic shunt formation. Diagnostic and Interventional Radiology. 2017;23(3):206. https://doi.org/10.5152/dir.2016.15601
  • 21. Ishibashi T, Takei Y, Mamoru K, et al. Paediatric Diagnostic Reference Levels for Diagnostic and Therapeutic Cardiac Catheterization in Japan. PREPRINT (Version 1) available at Research Square. 2021. https://doi.org/10.21203/rs.3.rs-288911/v1
  • 22. Sutton NJ, Lamour J, Laura GA, et al. Paediatric patient radiation dosage during endomyocardial biopsies and right heart catheterization using a standard “ALARA” radiation reduction protocol in the modern fluoroscopic Era. Catheterization and Cardiovascular Intervention. 2014;83(1):80-83. https://doi.org/10.1002/ccd.25058
  • 23. Ghelani SJ, Glatz AC, Sthuthi D, et al. Radiation dose benchmarks during cardiac catheterization for congenital heart disease in the United States. JACC: Cardiovascular Interventions. 2014;7(9):1060-1069. https://doi.org/10.1016/j.jcin.2014.04.013
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12e51955-41f7-46dd-94e9-cb68cc4c95bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.