Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For this work, fibre-reinforced composites were prepared using 14 layers of aramid fabric and 6 layers of carbon fabric. The matrix was composed of epoxy resin Epidian 52, cured with TFF hardener. The composite cross-linked at ambient temperature. Additionally, a phase change material (PCM) in the form of BASF's Micronal DS5038X powder was added to the resin. Three samples were prepared for each measurement run, varying in the amount of powder additive used in the resin. The composites prepared in this way were subjected to ablation tests lasting approximately 3 minutes, during which the samples were exposed to a hot gas mixture at around 1100°C. The primary parameter measured during the experimental tests was the temperature of the back surface of the composite, recorded using thermocouples and a thermal imaging camera. The temperature of the ablated surface was also measured using a pyrometer, while the internal temperature of the material was recorded using thermocouples. Following the experimental tests, the ablative weight loss and ablation rate were analyzed. Additionally, an organoleptic evaluation of the individual layers of the composite structure was performed. The study revealed that the incorporation of phase change material altered the ablative properties of the composite. The average temperature on the back surface of the composite without the addition of microspheres was approximately 165°C after 180 seconds of heating. With the addition of PCM, significantly lower temperatures were recorded, ranging from 86°C to 106°C. Conversely, the addition of powder in the epoxy resin resulted in an increase in ablative weight loss by 1-4%, depending on the amount of the additive. This may be due to the formation of a layer with a higher thermal conductivity barrier in the composite with PCM.
Wydawca
Rocznik
Tom
Strony
228--237
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 No. 35, 08-521 Dęblin, Poland
autor
- Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 No. 35, 08-521 Dęblin, Poland
autor
- Institute of Navigation, Polish Air Force University, ul. Dywizjonu 303 No. 35, 08-521 Dęblin, Poland
Bibliografia
- 1. Kucharczyk W. Thermo-protective ablation properties of polymer composites with pulveraceous fillers. Problemy Techniki Uzbrojenia. 2007, 36(101), 151-158. (in Polish).
- 2. Kucharczyk W., Mazurkiewicz A., Żurowski W. Nowoczesne materiały konstrukcyjne. 2010, Politechnika Radomska. Radom. (in Polish).
- 3. Izbicka J., Michalski J. Kompozyty, laminaty, tworzywa stosowane w technice. Prace Instytutu Elektrotechniki. 2006, 228, 341–348. (in Polish).
- 4. Przybyłek P., Komorek A., Szczepaniak R. The influence of metal reinforcement upon the ablative properties of multi-layered composites. Adv. Sci. Technol. Res. J. 2023, 17(2), 111–119. https://doi.org/10.12913/22998624/161427.
- 5. J.K. Chen, C.T. Sun and Chang C.I. Failure analysis of a graphite/epoxy laminate subjected to combined thermal and mechanical loading. J. Compos. Mater. 1985, 19, 408–423. https://doi.org/10.1177/002199838501900502.
- 6. Griffis C.A., Nemes J.A., Stonesifer F.R., Chang C.I. Degradation in strength of laminated composites subjected to intense heating and mechanical loading. J. Compos. Mater. 1986, 20, 216–235. https://doi.org/10.1177/002199838602000301.
- 7. Dodds N., Gibson A.G., Dewhurst D., Davies J.M. Fire behaviour of composite laminates. Compos. A: Appl. Sci. Manuf. 2000, 31(7), 689–702. https://doi.org/10.1016/S1359-835X(00)00015-4.
- 8. Bakar M., Kucharczyk W., Stawarz S. Investigation of thermal and ablative properties of modified epoxy resins. Polym. Polym. Compos. 2016, 24(8), 617-623. https://doi.org/10.1177/096739111602400808.
- 9. Bahramian A.R., Kokabi M., Famili M.H.N., Beheshty M.H. Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modelling and experimental. Polymer. 2006, 47, 3661–3673. https://doi.org/10.1016/j.polymer.2006.03.049.
- 10. Bahramian A.R., Kokabi M. Ablation mechanism of polymer layered silicate nanocomposite heat shield. J. Hazard. Mater., 2009, 166(1), 445–454. https://doi.org/10.1016/j.jhazmat.2008.11.061.
- 11. W. Kucharczyk, P. Przybyłek and T. Opara. Investigation of the thermal protection ablative properties of thermosetting composites with powder fillers: the corundum Al2O3 and the carbon powder C. Pol. J. Chem. Technol., 2013, 15(4), 49–53. https://doi.org/10.2478/pjct-2013-0067.
- 12. Butler B.D., Winter M., Panerai F., Martin A., Bailey S.C., Stackpoole M., Denehy P.M., Splinter S. Characterization of candidate materials for remote recession measurements of ablative heat shield materials. 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA. 2016.
- 13. Czigany T. Discontinuous basalt fibre-reinforced hybrid composites (in: polymer composites from nano- to macro scale). 2005, Springer. New York.
- 14. Krzyzak A., Racinowski D., Szczepaniak R., Kosicka E. An assessment of the reliability of CFRP composites used in nodes of friction after impact of UV-A impacts and thermal shocks. Ekspolatacja i Niezawodnosc, 2023, 25(4). https://doi.org/10.17531/ein/174221.
- 15. Walczak M., Szala M., Pieniak D. Effect of water absorption on tribological properties of thermoplastics matrix composites reinforced with glass fibres. Advances in Science and Technology Research Journal. 2022, 16(2), 232–239.
- 16. Omen Ł., Szczepaniak R., Panas A.J. Investigation of carbon nanotube particles addition effect on the dispersed composite structure thermal diffusivity. Adv. Sci. Technol. Res. J., 2023, 17(5), 280–288. https://doi.org/10.12913/22998624/171593.
- 17. Borowiec M., Szczepaniak R., Machado J. The influence of conditioning on dynamic behavior of polymer composites. Adv. Sci. Technol. Res. J., 2023, 17(5), 195–207. https://doi.org/10.12913/22998624/171492.
- 18. Alagar M., Ashok Kumar A., Mahesh K.P.O., Dinakaran K. Studies on thermal and morphological characteristics of E-glass/Kevlar 49 reinforced siliconized epoxy composites. Eur. Polym. J. 2000, 36, 2449–2454. https://doi.org/10.1016/S0014-3057(00)00038-0.
- 19. Minkook K., Jaeheon C., Dai Gil L. Development of the fire-retardant sandwich structure using an aramid/glass hybrid composite and a phenolic foam-filled honeycomb. Compos. Struct. 2016, 158, 227–234. https://doi.org/10.1016/j.compstruct.2016.09.029.
- 20. Krzyżak A., Kucharczyk W., Gąska J., Szczepaniak R. Ablative test of composites with epoxy resin and expanded perlite. Compos. Struct. 2018, 202, 978–987. https://doi.org/10.1016/j.compstruct.2018.05.018.
- 21. Wu X., Ding J., Kong Y., Sun Z., Shao G., Li B., Wu J., Zhong Y., Shen X., Cui S. Synthesis of a novel three-dimensional Na2SO4@SiO2@Al2O3-SiO2 phase change material doped aerogel composite with high thermal resistance and latent heat. Ceram. Int., 2018, 44(17), 21855–21865. https://doi.org/10.1016/j.ceramint.2018.08.294.
- 22. Huang Y.H., Cheng Y.X., Zhao R., Chen W.L. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy. Appl. Energy, 2020, 262, 114536. https://doi.org/10.1016/j.apenergy.2020.114536.
- 23. Ren Y., Li P., Yuan M., Ye F., Xu C., Liu Z. Effect of the fabrication process on the thermophysical properties of Ca(NO3)2–NaNO3/expanded graphite phase change material composites. Solar Energy Materials and Solar Cells. 2019, 200, 110005. https://doi.org/10.1016/j.solmat.2019.110005.
- 24. He F., Wang X., Wu D. Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor. Renewable Energy. 2015, 74, 689–698. https://doi.org/10.1016/j.renene.2014.08.079.
- 25. Szczepaniak R., Kozun G., Przybylek P., Komorek A., Krzyzak A., Woroniak G. The effect of the application of a powder additive of phase change materials on the ablative properties of a hybrid composite. Compos. Struct. 2021, 256, 113041. https://doi.org/10.1016/j.compstruct.2020.113041.
- 26. Panas A.J., Szczepaniak R., Stryczniewicz W., Omen Ł. Thermophysical properties of pressure-sensitive pain. Thermochimica Acta, 2023, 730, 179612. https://doi.org/10.1016/j.tca.2023.179612.
- 27. Krzyzak A., Relich S., Kosicka E., Szczepaniak R., Mucha M. Selected construction properties of hybrid epoxy composites reinforced with carbon fiber and alumina. Adv. Sci. Technol. Res. J. 2022, 16(2). https://doi.org/10.12913/22998624/147521.
- 28. BASF, Datenblatt Micronal PCM DS 5038 X, 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12e266b7-bbe1-404a-973a-9e9de36a1ff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.