PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main task of the present research was to analyse wave climate and evaluate energy resources in the Lithuanian territorial waters of the Baltic Sea. Wave and wind parameters were analysed according to long-term measurement site data. Distribution of wave parameters in the Baltic Sea Lithuanian nearshore was evaluated according to wave modelling results. Wave energy resources were estimated for three design years (high, median and low wave intensity). The results indicated that in the coastal area of Lithuania, waves approaching from western directions prevail with mean wave height of 0.9 m. These waves are the highest and have the greatest energy potential. The strongest winds and the highest waves are characteristic for the winter and autumn seasons. In the Baltic Sea Lithuanian nearshore, the mean wave height ranges from 0.68 to 0.98 m, while the estimated mean energy flux reaches from 0.69 to 1.90 kW m−1 during a year of different wave intensity. Distribution of energy fluxes was analysed at different isobaths in the nearshore. Moving away from the coast, both wave height and wave power flux increases significantly when water depth increases from 5 to 20 m. Values of the mentioned parameters tend to change only slightly when the sea is deeper than 20 m. In a year of median wave intensity, the mean wave energy flux changes from 1.10 kW m−1 at 10 m isobaths to 1.38 kW m−1 at 30 m isobaths. The identified differences of wave height and energy along the selected isobaths are insignificant.
Słowa kluczowe
Czasopismo
Rocznik
Strony
207--218
Opis fizyczny
Bibliogr. 38 poz., mapy, rys., tab., wykr.
Twórcy
  • Lithuanian Energy Institute, Kaunas, Lithuania
  • Lithuanian Energy Institute, Kaunas, Lithuania
  • Lithuanian Energy Institute, Kaunas, Lithuania
Bibliografia
  • [1] Akpınar, A., Van Vledder, G. Ph., Kömürcü, M. I., Özger, M., 2012. Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Cont. Shelf Res. 50 (51), 80-99, http://dx.doi.org/10.1016/j.csr.2012.09.012.
  • [2] Avotiņš, A., Greivulis, J., Kalniņš, L., 2008. Wave energy conversion potential of the Baltic Sea. Power Electric. Eng. 23, 213-224.
  • [3] Benassai, G., Montuori, A., Migliaccio, M., Nunziata, F., 2013. Sea wave modelling with X-band COSMO-SkyMed© SAR-derived wind field forcing and applications in coastal vulnerability assessment. Ocean Sci. 9 (2), 325-341, http://dx.doi.org/10.5194/os-9-325-2013.
  • [4] Bernhoff, H., Sjöstedt, E., Leijon, M., 2006. Wave energy resources in sheltered sea areas: a case study of the Baltic Sea. Renew. Energ. 31 (13), 2164-2170, http://dx.doi.org/10.1016/j.renene.2005.10.016.
  • [5] Blažauskas, N., 2013. Potential of wave energy developments for the Baltic Sea Region. A case study. SUBMARINER Report 7/2013, 22 pp.
  • [6] Blažauskas, N., Grigelis, A., Gelumbauskaitė, L. Ž., Gulbinskas, S., Suzdalev, S., Ferrarin, Ch., 2015. Towards sustainable use of marine resources in the south-eastern Baltic Sea (Lithuania): a review. Baltica 28 (2), 179-188, http://dx.doi.org/10.5200/baltica.2015.28.15.
  • [7] Booij, N., Ris, R. C., Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions — 1. Model description and validation. J. Geophys. Res. — Oceans 104 (C4), 7649-7666, http://dx.doi.org/10.1029/98JC02622.
  • [8] EPRI, 2011. Mapping and Assessment of the United States Ocean Wave Energy Resources. Electric Power Research Institute, Palo Alto, CA, USA, 176 pp.
  • [9] Falcao, A. F. O., 2010. Wave energy utilization: a review of the technologies. Renew. Sust. Energ. Rev. 14 (3), 899-918, http://dx.doi.org/10.1016/j.rser.2009.11.003.
  • [10] Gopaul, N., O'Brien-Delpesh, C., 2006. The use of a nearshore wave model in identifying shoreline change at station beach, LaBrea, Trinidad. (Proc. 8th International Coastal Symposium). J. Coast. Res. SI39, 1474-1478.
  • [11] Hasselmann, K., 1988. The WAM model — a 3rd generation ocean wave prediction model. J. Phys. Oceanogr. 18 (12), 1775-1810, http://dx.doi.org/10.1175/1520-0485(1988)0181775:TWMTGO>2.0.CO;2.
  • [12] Henfridsson, U., Neimane, V., Strand, K., Kapper, R., Bernhoff, H., Danielsson, O., Leijon, M., Sundberg, J., Thorburn, K., Ericsson, E., Bergman, K., 2007. Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak. Renew. Energ. 32 (12), 2069-2084, http://dx.doi.org/10.1016/j.renene.2006.10.006.
  • [13] Iglesias, G., Carballo, R., 2009. Wave energy potential along the Death Coast (Spain). Energy 34 (11), 1963-1975, http://dx.doi.org/10.1016/j.energy.2009.08.004.
  • [14] Iglesias, G., Carballo, R., 2010. Wave energy resource in the Estaca de Bares area (Spain). Renew. Energ. 35 (7), 1574-1584, http://dx.doi.org/10.1016/j.renene.2009.10.019.
  • [15] Iglesias, G., Lopez, M., Carballo, R., Castro, A., Fraguela, J. A., Frigaard, P., 2009. Wave energy potential in Galicia (NW Spain). Renew. Energ. 34 (11), 2323-2333, http://dx.doi.org/10.1016/j.renene.2009.03.030.
  • [16] Johnson, H. K., 1998. On modelling wind-waves in shallow and fetch limited areas using the method of Holthuijsen, Booij and Herbers. J. Coast. Res. 14 (3), 917-932.
  • [17] Kasiulis, E., Punys, P., Kofoed, J. P., 2015. Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea. Renew. Sust. Energ. Rev. 41, 134-142, http://dx.doi.org/10.1016/j.rser.2014.08.044.
  • [18] Kelpšaitė, L., Dailidienė, I., 2011. Influence of wind wave climate change to the coastal processes in the eastern part of the Baltic Proper. (Proc. 11th International Coastal Symposium, Szczecin, Poland). J. Coast. Res., SI 64, 220-224.
  • [19] Kelpšaite, L., Dailidiene, I., Soomere, T., 2011. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993-2008. Boreal Environ. Res. 16 (Suppl. A), 220-232.
  • [20] Kempener, R., Neumann, F., 2014. Wave Energy. IRENA Ocean Energy Technology Brief 4, Irena, 28 pp.
  • [21] Lenee-Bluhm, P., Paasch, R., Özkan-Haller, H. T., 2011. Characterizing the wave energy resource of the US Pacific Northwest. Renew. Energ. 36 (8), 2106-2119, http://dx.doi.org/10.1016/j.renene.2011.01.016.
  • [22] Mazarakis, N., Kotroni, V., Lagouvardos, K., Bertotti, L., 2012. Highresolution wave model validation over the Greek maritime areas. Nat. Hazard. Earth Syst. 12 (11), 3433-3440, http://dx.doi.org/10.5194/nhess-12-3433-2012.
  • [23] MIKE 21, 2012. Wave Modelling, Vol. 1. User Guides. MIKE by DHI, 326 pp.
  • [24] Mørk, G., Barstow, S., Kabuth, A., Pontes, M. T., 2010. Assessing the global wave energy potential. In: Proc. OMAE2010 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering, June 6-11, 2010, Shanghai, China.
  • [25] O'Hagan, A. M., Huerta, C., O'Callaghan, J., Greaves, D., 2016. Wave energy in Europe: views on experiences and progress to date. Int. J. Mar. Energ. 14, 180-197, http://dx.doi.org/10.1016/j.ijome.2015.09.001.
  • [26] Ris, R. C., Booij, N., Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions — 2. Verification. J. Geophys. Res. — Oceans 104 (C4), 7667-7681, http://dx.doi.org/10.1029/1998JC900123.
  • [27] Saulnier, J. B., Prevosto, M., Maisondieu, C., 2011. Refinements of sea state statistics for marine renewables: a case study from simultaneous buoy measurements in Portugal. Renew. Energ. 36 (11), 2853-2865, http://dx.doi.org/10.1016/j.renene.2011.04.015.
  • [28] Soomere, T., 2016. Extremes and decadal variations in the Baltic Sea wave conditions. In: Pelinovsky, E., Kharif, C. (Eds.), Extreme Ocean Waves. Springer, Cham, 107-140.
  • [29] Soomere, T., Eelsalu, M., 2014. On the wave energy potential along the eastern Baltic Sea coast. Renew. Energ. 71, 221-233, http://dx.doi.org/10.1016/j.renene.2014.05.025.
  • [30] Soomere, T., Raamet, A., 2011a. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7 (1), 141-150, http://dx.doi.org/10.5194/os-7-141-2011.
  • [31] Soomere, T., Raamet, A., 2011b. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53 (Suppl. 1), 335-371, http://dx.doi.org/10.5697/oc.53-1-TI.335.
  • [32] Staneva, J., Wahle, K., Günther, H., Stane, E., 2016. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight. Ocean Sci. 12 (3), 797-806, http://dx.doi.org/10.5194/os-12-797-2016.
  • [33] Street, S. I., Hanson, H., Larson, M., Bertotti, L., 2014. Modelling the wave climate in the Baltic Sea. VATTEN — J. Water Manage. Res. 70, 19-29.
  • [34] Tsoukala, V. K., Chondros, M., Kapelonis, Z. G., Martzikos, N., Lykou, A., Belibassakis, K., Makropoulos, C., 2016. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas — the case of Rethymno, Crete. Oceanologia 58 (2), 71-89, http://dx.doi.org/10.1016/j.oceano.2016.01.002.
  • [35] Tuomi, L., Kahma, K. K., Pettersson, H., 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16, 451-472.
  • [36] Vannucchi, V., Cappietti, L., 2016. Wave energy assessment and performance estimation of state of the art wave energy converters in Italian hotspots. Sustainability 8 (12), 1300, http://dx.doi.org/10.3390/su8121300.
  • [37] Waters, R., Engstrom, J., Isberg, J., Leijon, M., 2009. Wave climate off the Swedish west coast. Renew. Energ. 34 (6), 1600-1606, http://dx.doi.org/10.1016/j.renene.2008.11.016.
  • [38] Weibull, W., 1939. A statistical study of the strength of material. Ing. Vetenskaps Akad. Handl. (Stockholm) 151, 45 pp.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12dd8d81-141e-4394-a681-3281f6164c7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.