PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quinoxaline-based small molecules: synthesis and investigation on their optoelectronic properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Small molecules of ThQuTh, CzQuTh, CzQuCz and TPAQuCz were designed and synthesized, based on quinoxaline acceptor, and electron donating groups, i.e. alkyl-thioephene, carbazole and triphenylamine on both side chains and molecular backbones. Their thermal, optical and electrochemical properties were systematically compared and studied. The absorption spectra of the small molecules were strongly affected by the donor units attached to quinoxaline. Strong electron donating groups, such as carbazole on the molecular backbone would lower optical band gap, resulting in a wide absorption and the strong donor on the side chain would enhance the absorption intensity in short wavelength region. The highest occupied molecular orbital (HOMO) energy levels of the four molecules were up-shifted with increasing the electron donating properties of donor units. The bulk-heterojunction organic solar cells with a device structure of ITO/PEDOT:PSS/SMs:PC61BM/LiF/Al were fabricated, in which the small molecules functioned as donors while PC61BM as acceptor. Because the electron-donating ability of carbazole (Cz), triphenylamine (TPA) is higher than that of thiophene (Th), CzQuTh, CzQuCz and TPAQuCz show higher power conversion efficiency (PCE) than that of ThQuTh. Furthermore, being the strongest in absorption intensity and widest in absorption spectrum, TPAQuCz has the highest power conversion efficiency. Further improvement of the device efficiency by optimizing the device structure is currently under investigation
Wydawca
Rocznik
Strony
167--176
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
autor
  • School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
autor
  • School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
autor
  • School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
autor
  • School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
Bibliografia
  • [1] JIN Y., CHEN Z., DONG S., ZHENG N., YING L., JIANG X.F., LIU F., HUANG F., CAO Y., Adv. Mater., 28 (2016), 9811.
  • [2] LEE J., SIN D.H., MOON B., SHIN J., KIM H.G., KIM M., CHO K., Energ. Environ. Sci., 10 (2017), 247
  • [3] RO H.W., DOWNING J.M., ENGMANN S., HERZING A.A., DELONGCHAMP D.M., RICHTER L.J., MUKHERJEE S., ADE H., ABDELSAMIE M., JAGADAMMA L.K., AMASSIAN A., LIU Y., YAN H., Solar Cell. Energy Environ. Sci., 9 (2016), 2835
  • [4] ZHANG B., LIANG J.F., HU L.W., PENG F., CHEN G.T., YANG W., J Mater Sci., 16 (2015), 5609.
  • [5] LIU Y., ZHAO J., LI Z., MU C., MA W., HU H., JIANG K., LIN H., ADE H., YAN H., Nat. Commun., 5 (2014), 5293.
  • [6] LI Y., YUE G.T., CHEN X.X., HE B.L., CHU L., CHEN H.Y., WU J.H., TANG Q.W., J Mater Sci., 9 (2013), 3528.
  • [7] ZHENG Z., ZHANG S., ZHANG J., QIN Y., LI W., YU R., WEI Z., HOU J., Adv. Mater., 28 (2016), 5133.
  • [8] QIAO F., LIU A.M., HU Z.Q., LIU Y.T., YU S.W., ZHOU Z.G., J. Mater. Sci., 13 (2009), 3462.
  • [9] ZHAO J., LI Y., YANG G., JIANG K., LIN H., ADE H., MA W., YAN H., Nat. Energy, 1 (2016), 15027.
  • [10] ZHAO G.J., WU G.L., HE C., BAI F.Q., XI H.X., ZHANG H.X., LI Y.F., J. Phys. Chem., 113 (2009), 2636.
  • [11] WU G., ZHAO G., HE C., ZHANG J., HE Q., CHEN X., LI Y., Sol. Energ. Mater. Sol. C., 93 (2009), 108.
  • [12] LIN Y., LI Y., ZHAN X., Chem. Soc. Rev., 41 (2012), 4245.
  • [13] MISHRA A., BAUERLE P., Ang. Chem., 51 (2012), 2020.
  • [14] COUGHLIN J., HENSON Z., WELCH G., BAZAN G., Chem. Res., 47 (2014), 257.
  • [15] CHEN Y., WANG X., LONG G., Acc. Chem. Res., 46 (2013), 2645.
  • [16] WANG D., DING W., GENG Z., WANG L., GENG Y., SU Z., YU H., Mater. Chem. Phys., 145 (2014), 387.
  • [17] KAN B., LI M., ZHANG Q., LIU F., WAN X., WANG Y., NI W., LONG G., YANG X., FENG H., ZUO Y., ZHANG M., HUANG F., CAO Y., RUSSELL T.P., CHEN Y.A., J. Am. Chem. Soc., 137 (2015), 3886.
  • [18] SHI Q., CHENG P., LI Y., ZHAN X., Adv. Energ. Mater., 2(2012), 63.
  • [19] LINCKER F., DELBOSC N., BAILLY S., DE BETTIGNIES R., BILLON M., PRON A., DEMADRILLE R., Adv. Funct. Mater., 18 (2008), 3444.
  • [20] ZHANG J., YANG Y., HE C., HE Y., ZHAO G., LI Y., Macromolecules, 42 (2009), 7619.
  • [21] YANG Y., ZHANG J., ZHOU Y., ZHAO G., HE C., LI Y., ANDERSSON M., INGANAS O., ZHANG F., J. Phys. Chem. C, 114 (2010), 3701.
  • [22] ZHENG Z., AWARTANI O.M., GAUTAM B., LIU D., QIN Y., LI W., BATALLER A., GUNDOGDU K., ADE H., HOU J., Adv. Mater., 5 (2016), 29.
  • [23] FAN Q., XIAO M., LIU Y., SU W., GAO H., TAN H., WANG Y., LEI G., YANG R., ZHU W., Polym. Chem., 6 (2015), 4290.
  • [24] SU W., XIAO M., FAN Q., ZHONG J., CHEN J., DANG D., SHI J., XIONG W., DUAN X., TAN H., LIU Y., ZHU W., Org. Electron., 17 (2015), 129.
  • [25] FAN Q., LIU Y., XIAO M., SU W., GAO H., CHEN J., TAN H., WANG Y., YANG R., ZHU W., J. Mater. Chem. C, 3 (2015), 6240.
  • [26] LEE D.-C., BROWNELL V.L., YAN L., YOU W., ACS Appl. Mater. Interfaces, 6 (2014), 15767.
  • [27] CHANG D. W., KO S.-J., KIM J.Y., DAI L., BAEK J.-B., Synth. Met., 162 (2012), 1169.
  • [28] LI W., WANG D., WANG S., MA W., HEDSTROEM S., JAMES D. I., XU X., PERSSON P., FABIANO S., BERGGREN M., INGANAES O., HUANG F., WANG E., ACS Appl. Mater. Inter., 7 (2015), 27106.
  • [29] VELUSAMY M., HUANG J.H., HSU Y.C., CHOU H.H., HO K.C., WU P.L., CHANG W.H., LIN J.T., CHU C.W., Org. Lett., 11 (2009), 4989.
  • [30] HAGEMANN O., JØRGENSEN M., KREBS F.C., J. Org. Chem., 71 (2006), 5546.
  • [31] LIM B., BAEG K.J., JEONG H.G., JO J., KIM H., PARK J.W., NOH Y.Y., VAK D., PARK J.H., PARK J.W., KIM D.Y., Adv. Mater., 21 (2009), 2808.
  • [32] SVENSSON M., ZHANG F., VEENSTRA S.C., VERHEES W.J.H., HUMMELEN J.C., KROON J.M., INGANAS O., Adv. Mater., 15 (2003), 988.
  • [33] XU M.F., LI R.Z., POOTRAKULCHOTE N., SHI D., GUO J., YI Z.H., ZAKEERUDDIN S.M., GRATZEL M., WANG P., J. Phys. Chem., 112 (2008), 19770. b) LIU M., WANG Y.F., ZHANG Z.Y., LI J.M., LIU Y., TAN H., NI M.J., LEI G.T., ZHU M.X., ZHU W.G., J. Polym. Sci. Pol. Chem., 49 (2011), 3874.
  • [34] LI Z., DONG Q., XU B., LI H., WEN S., PEI J., YAO S., LU H., LI P., TIAN W., Sol. Energ. Mater. Sol. C., 95 (2011), 2272.
  • [35] ZHANG W.F., NG G.M., TAM H.L., WONG M.S., ZHU F.S., J. Poly. Sci. Part A: Poly. Chem., 49 (2011), 1865.
  • [36] SO S., CHOI H., KIM C., CHO N., KO H.M., LEE J.K., KO J., Sol. Energ. Mater. Sol. C, 95 (2011), 3433.
  • [37] LI Y.F., CAO Y., GAO J., WANG D.L., YU G., HEEGER A.J., Synth. Met., 99 (1999), 243.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12d756d8-b5aa-484d-8140-6b2149b9695a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.