PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coalescing stochastic processes in retrival from semantic memory

Identyfikatory
Warianty tytułu
PL
Procesy koalescencyjne w mechanizmie odzysku pojęć z pamięci semantycznej
Języki publikacji
EN
Abstrakty
EN
Semantic memory retrieval is one of the most fundamental cognitive functions in humans. It is not fully understood and researchers from various fields of science struggle to find a model that would correlate well with experimental results and help understanding the complex background processes involved. To study such a phenomenon we need a relevant experimental protocol which can isolate the basic cognitive functions of interest from other perturbations. A variety of existing medical tests can provide such information, and the one we analyze is the Category Fluency Test (CFT). It was originally designed to measure frontal brain lobe damages in injured patients, and it tests directly the semantic memory retrieval, which is affected in cases of injury but can be also influenced by dementia, Alzheimer syndrome, or just aging. This paper introduces a new paradigm in analysis of the temporal structure of CFT responses by utilizing coalescent stochastic process model. We believe that this particular model is relevant to how this cognitive function operates and can lead to a better understanding of the background processes. The method turns out to be better at separating the two cognitively different groups studied here than the Weibull model from our previous paper Meyer et al.(2012), and could potentially be used for early diagnostics of dementia or Alzheimer's disease. Two other models, one based on the concept of Levy processes, and one related to the fractional Poisson model, are also explored.
PL
Praca proponuje model procesów koalescencyjnych w celu wyjaśnienia mechanizmów odzysku pojęć i nazw z pamięci semantycznej. Model jest pretestowany używając dobrze znanego eksperymentalnego Testu Biegłości Kategorycznej, który jest standardowym narzędziem neurologów badających pacjentów z objawami demencji. Możliwości modelowania opartego na procesach Lévy’ego i ułamkowych procesach Poissona są również zbadane.
Rocznik
Strony
189--224
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • Case Western Reserve University, Center for Stochastic and Chaotic Processes in Science and Technology, 11900 Euclid Avenue, Cleveland, Ohio 44106, USA.
  • Case Western Reserve University, Department of Mathematics, Applied Mathematics and Statistics, and Center for Stochastic and Chaotic Processes in Science and Technology, 11900 Euclid Avenue, Cleveland, Ohio 44106, USA.
autor
  • Case Western Reserve University, Department of Neurology, Case Medical Center, 11900 Euclid Avenue, Cleveland, Ohio 44106, USA
Bibliografia
  • [1] Bertoin, J., (2010) Exchangable Coalescents, Nachdiploma Lectures, ETH Zurich, 103 pp.
  • [2] Bousfield W.A., and Sedgwick, C.H.W., (1944), An analysis of sequences of restricted associative responses, Journal of General Psychology 30, 149-165; doi: 10.1080/00221309.1944.10544467
  • [3] Burianova, H.; Grady, C. L. (2007). Common and Unique Neural Activations in Autobiographical, Episodic, and Semantic Retrieval. Journal of Cognitive Neuroscience 15, 20-34; doi: 10.1162/jocn.2007.19.9.1520
  • [4] Cahoy, D., Uchaykin, V., and Woyczyński, W.A. (2010), Parametric estimation for fractional Poisson processes, Journal of Statistical Planning and Inference 140, 3106-3120; doi: 10.1016/j.jspi.2010.04.016
  • [5] Canning S.J., Leach L., Stuss D., et al. (2004) Diagnostic utility of abbreviated fluency measures in Alzheimer disease and vascular dementia. Neurology 24, 556–562; doi: 10.1212/WNL.62.4.556
  • [6] Caramelli P, Carthery-Goulart M.T., Porto CS, et al.(2007) Category fluency as a screening test for Alzheimer disease in illiterate and literate patients. Alzheimer Dis. Assoc. Disord. 21, 6–67; doi: 10.1097/WAD.0b013e31802f244f
  • [7] Collins, A. M.; Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior 8(2), 240-247; doi: 10.1016/S0022-5371(69)80069-1
  • [8] Cousineau, D., Goodman, V. and Shiffrin, R. M. (2002). Extending statistics of extremes to distributions varying on position and scale, and implication for race models. Journal of Mathematical Psychology, 46, 431-454; doi: 10.1006/jmps.2001.1399
  • [9] Denker, N. , and Woyczyński, W.A., Introductory Statistics and Random Phenomena: Uncertainty, Complexity and Chaotic behavior in Engineering and Science , Birkhauser-Boston, 1998; doi: 10.1007/978-1-4612-2028-2
  • [10] Devroye, L., and Gyorfi, L., (1985). Nonparametric Density Estimation: The L1 View, Springer, New York-Berlin-Heidelberg.
  • [11] Diaz, M., Sailor, K., Cheung, D., and Kuslansky, G. (2003) Category size effects in semantic and letter fluency in Alzheimer’s patients. Brain and Language, 89, 108–114; doi: 10.1016/S0093-934X(03)00307-9
  • [12] Gomez R.G., White D.A. (2006) Using verbal fluency to detect very mild dementia of the Alzheimer type. Arch. Clin. Neuropsychol. 21, 771–775; doi: 10.1016/j.acn.2006.06.012
  • [13] Graesser, A., and Mandler, G. (1978). Limited processing capacity constrains the storage of unrelated sets of words and retrieval from natural categories. Journal of Experimental Psychology: Human Learning and Memory 4, 86-100; doi: 10.1037//0278-7393.4.1.86
  • [14] Jourdain, B., Meleard, S., and Woyczyński, W.A. (2008), Nonlinear stochastic differential equations driven by Levy processes and related partial differential equations, ALEA- Latin American Journal on Probability and Mathematical Statistics, 4, 1-29.
  • [15] Kahana, M.J., (2012) Foundations of Human Memory , Oxford University Press.
  • [16] Karch, G. and Woyczyński, W.A. (2007) Fractal Hamilton-Jacobi-KPZ equations, Transactions of the American Mathematical Society 360, 2423-2442; doi: 10.1090/S0002-9947-07- 04389-9; MR 2373320(2008m:35182)
  • [17] Kendall, D.G., (1957). Some problems in the theory of dams, Journal of the Royal Statistical Society, Series B (Methodological), 19 (2), 207-233.
  • [18] Kingman, J.F.C., (1977). The population structure associated with the Ewens sampling formula, Theoretical Population Biology 11, 274-283; doi: 10.1016/0040-5809(77)90029-6
  • [19] Kingman, J.F.C., (2000). Origins of the coalescent: 1974-1982, Genetics 156(4), 1461.
  • [20] Kramer J.H., Nelson A., Johnson J.K., et al. (2006) Multiple cognitive deficits in amnestic mild cognitive impairment. Dement Geriatr. Cogn. Disord. 22, 306–311; doi: 10.1159/000095303
  • [21] Lambon Ralph, M.; Lowe, C.; Rogers, T.T. (2007). Neural Basis of Category-specific Semantic Deficits for Living Things: Evidence from semantic dementia, HSVE and a Neural Network Model . Brain: A Journal of Neurology 11, 27-37; doi: 10.1093/brain/awm025
  • [22] Lerner, A.J., Ogrocki, P.K., and Thomas, P.J. (2009). Network Graph Analysis of Category Fluency Testing. Cognitive Behavioral Neurology, In-Press; doi: 10.1097/WNN.0b013e318192ccaf
  • [23] McGill, W.J., and Gibbon, J. (1965), The general-gamma distribution and reaction times, Journal of Mathematical Psychology 2(1), 1-18; doi: 10.1016/0022-2496(65)90014-3
  • [24] Meyer, D. J., Messer, J., Singh, T., Thomas, P.J., Woyczyński, W.A., Kaye, J., and Lerner, A.J. (2012), Random local temporal structure of category fluency responses, Journal of Computational Neuroscience 32, 213-231; doi: 10.1007/s10827-011-0349-5
  • [25] Morris J.C., Weintraub S., Chui H.C., et al. (2006) The Uniform Data Set (UDS): Clinical and Cognitive Variables and Descriptive Data from Alzheimer Disease Centers. Alzheimer Dis. Assoc. Disord. 20, 210–216; doi: 10.1097/01.wad.0000213865.09806.92
  • [26] Murdock, B.B., and Okada, R. (1970), Interresponse times in single-trial free recall, Journal of Experimental Psychology 86(2), 263–267; doi: 10.1037/h0029993
  • [27] Piryatinska, A., Saichev, A.I., and Woyczyński, W.A. (2005), Models of anomalous diffusion: the subdiffusive case, Physica A: Statistical Mechanics and Applications 349, 375-420; doi: 10.1016/j.physa.2004.11.003
  • [28] Pollio, H.W., Richards S., and Lucas, R. (1969), Temporal properties of category recall, Journal of Verbal Learning and Verbal Behavior 8, 529-536; doi: 10.1016/S0022-5371(69)80099-X
  • [29] Ratcliff, R., and Murdock, B.B., Jr (1976) Retrieval process in recognition memory, Psychological Review 83, 190–214; doi: 10.1037/0033-295X.83.3.190
  • [30] Ratcliff, R. (1978) A theory of memory retrieval, Psychological Review 85, 59–108; doi: 10.1037/0033-295X.85.2.59
  • [31] Ratcliff, R. , McKoon, G., and Van Zandt, T. (1999) Connectionist and diffusion models of reaction time, Psychological Review 106, 261-300; doi: 10.1037/0033-295X.106.2.261
  • [32] Ratcliff, R. and Tuerlinckx, F, .(2002), Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability, Psychonomic Bulletin & Review, 9(3), 438-481; doi: 10.3758/BF03196302
  • [33] Ratcliff, R. , Thapar, A., and McKoon, G., (2004) A diffusion model analysis of the effects of aging on recognition memory, Journal of Memory and Language 50(2004), 408-424; doi: 10.1016/j.jml.2003.11.002
  • [34] Rhodes, T, and Turvey, M.T., (2007), Human memory retrieval as Levy foraging, Physica A, 385, 255-260; doi: 10.1016/j.physa.2007.07.001
  • [35] Rohrer, D., Wixted, J.T., Salmon, D.P., and Butters, N. (1995) Retrieval from semantic memory and Its Implications for Alzheimer’s disease. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2.1), 1127–1139; doi: 10.1037/0278-7393.21.5.1127
  • [36] Rohrer, D., (1996) On the relative and absolute strength of a memory trace. Memory and Cognition, 24(2), 188–201; doi: 10.3758/bf03200880
  • [37] Rosenberg, N.A., and Nordborg, M., (2002), Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms, Nature Reviews– Genetics 3, 380-390; doi: 10.1038/nrg795
  • [38] Rouder, J.N., Tuerlinckx, F., Speckman, P., Lu, J. and Gomez, P. (2008) A hierarchical approach for fitting curves to response time measurements, Psychonomic Bulletin and Review 15(6), 1201-1208; doi: 10.3758/PBR.15.6.1201
  • [39] Sauzeon H., Lestage P., Raboutet C., et al. (2004) Verbal fluency output in children aged 7–16 as a function of the production criterion: qualitative analysis of clustering, switching processes, and semantic network exploitation. Brain Lang. 89, 192–202; doi: 10.1016/s0093- 934x(03)00367-5
  • [40] Sashadri V., The Inverse Gaussian Distribution, Oxford University Press, 1993.
  • [41] Shirani-Mehr H., Li C., Linag G., Shmueli-Scheuer M. (2008), Quality-aware retrieval of data objects from autonomous sources for web-based repositories., The American Mathematical Society. 1997. Chapter 11 pgs. 405–470; doi: 10.1109/icde.2008.4497600
  • [42] Shreestha R., Shaw, B., Woyczyński, W.A., Thomas, P.J., Fritsch, T., Lerner, A.J.(2015), Growth and evolution of category fluency network graphs. Journal of Systems and Integrative Neuroscience, 1(1) (2015), 6-13.
  • [43] Tombaugh T.N., Kozak J., Rees L. (1999) Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch. Clin. Neuropsychol. 14, 167–177.
  • [44] Troyer A.K., Moscovitch M., Winocur G. (1997), Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults, Neuropsychology 11(1), 138–146; doi: 10.1037/0894-4105.11.1.138
  • [45] Van Zandt, T.(2000). How to fit a response time distribution. Psychonomic Bulletin and Review 7, 424-465; doi: 10.3758/BF03214357
  • [46] Vargha-Khadem et al. (1997). Differential Effects of Early Hippocampal Pathology on Episodic and Semantic Memory . Science 18 July 1997: Vol. 277 no. 5324, 376-380; doi: 10.1126/science.277.5324.376
  • [47] Vargha-Khadem et al. (1998). Episodic and declarative memory: Role of the hippocampus, Hippocampus 8(3), 198-204; doi: 10.1002/(SICI)1098-1063(1998)8:3¡198::AIDHIPO2¿3.0.CO;2-G
  • [48] Weiner, M.F., Neubecker, K.E., Bret , M.E., and Hynan, L,S. (2008), Language in Alzheimer’s Disease. Journal of Clinical Psychiatry, 69(2.4): 1223–7; doi: 10.4088/JCP.v69n0804
  • [49] Wingfield, A., and Kahana, M.J. (2002) The dynamics of memory retrieval in older adulthood, Canadian Journal of Experimental Psychology, 56(3), 187-199; doi: 10.1037/h0087396
  • [50] White, C.N., Ratcliff, R., Vasey, M.W., and McKoon, G. (2010) Using diffusion models to understand clinical disorders, Journal of Mathematical Psychology, 54, 39–52; doi: 10.1016/j.jmp.2010.01.004
  • [51] Wixted J.T., and Rohrer, D. (1994), Analyzing the dynamics of free recall: An integrative review of the empirical literature, Psychonomic Bulletin and Review 1, 89-106; doi: 10.3758/BF03200763
  • [52] Woyczyński, W.A. (2001) Levy processes in the physical sciences, in: Levy Processes – Theory and Applications, T. Mikosch, O. Barndorff-Nielsen, S. Resnick, Eds., Birkhauser-Boston, 241–266. doi: 10.1007/978-1-4612-0197-7-11
  • [53] Woyczyński, W.A.(2005) Nonlinear partial differential equations driven by Levy diffusions and related statistical issues, in: Probability and Partial Differential Equations in Modern Applied Mathematics, J. Duan and E.C. Waymire, Eds., IMA Volume 140, pp. 247–258, Springer-Verlag; doi: 10.1007/978-0-387-29371-4 16
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12d5d5e1-a7f8-4a6e-8f0a-cf76ca99f481
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.