PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD simulation of heat transfer and fluid flow within metallic foam in forced convection environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, a CFD simulation of forced convection in a rectangular block of aluminum foam is investigated. A two energy equations model with the Brinkman-Forchheimer extended Darcy model is considered in the CFD investigation. The governing equations are solved using COMSOL, a commercial multiphysics finite-element PDE solver. Three types of aluminum foam 10-, 20-, 40- pore per inch with different porosity are studied. A parametric study for the range of Reynolds number Re = 250-2000 and the imposed heat flux qw = 0:8−1:6 (W/cm2) is carried out to examine the thermal and the fluid flow behaviors of the aluminum foams. It is found that the plug flow conditions are prevalence for the aluminum foams. The 40-pore per inch aluminum foam has a better heat transfer performance with a larger pressure drop, followed by the 20-, and then by the 10- pore per inch. The validation of the simulation results is made against experimental data from the literature and showed a perfect agreement.
Rocznik
Strony
611--635
Opis fizyczny
Bibliogr. 40 poz., il. (w tym kolor.), wykr.
Twórcy
  • Department of Mechanical Engineering, Abbes Laghrour University, Khenchela, 40000, Algeria
autor
  • University Grenoble Alpes, G2Elab, F-38000 Grenoble, France
autor
  • Department of Mechanical Engineering, Abbes Laghrour University, Khenchela, 40000, Algeria
  • LESEI Laboratory, Faculty of Engineering, University of Batna, 05000, Algeria
Bibliografia
  • [1] Dai, Z., Nawaz, K., Park, Y., Chen, Q. and Jacobi, A. M.: A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications, Heat Transfer Eng, 33, 1, 21-30, 2012.
  • [2] Boyd, B. and Hooman, K.: Air-cooled micro-porous heat exchangers for thermal management of fuel cells, Int. Commun. Heat Mass Transfer, 39, 363-367, 2012.
  • [3] Hutter, C., Buchi, D., Zuber, V. and von Rohr, R.: Heat transfer in metal foams and designed porous media, Chem. Eng. Sci, 66, 3806-3814, 2011.
  • [4] Wu, Z., Caliot, C., Flamant, G. and Wang, Z.: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances, Int. J. Heat Mass Transfer, 54, 1527-1537, 2011.
  • [5] Ji, X., Xu, J. and Abanda, A. M.: Copper foam based vapor chamber for high heat flux dissipation, Exp. Therm. Fluid Sci, 40, 93-102, 2012.
  • [6] Wan, Z. M., Guo, G. Q., Su, K. L., Tu, Z. K. and Liu, W.: Experimental analysis of flow and heat transfer in a miniature porous heat sink for high heat flux application, Int. J. Heat Mass Transfer, 55, 4437-4441, 2012.
  • [7] Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells, Int. J. Heat Mass Transfer, 55, 3618-3632, 2012.
  • [8] Mancin, S., Zilio, C., Diani, A. and Rossetto, L.: Air forced convection through metal foams: Experimental results and modeling, Int. J. Heat Mass Transfer, 62, 112-123, 2013.
  • [9] Bhattacharya, A., Calmidi, V. V. and Mahajan, R. L.: Thermophysical Properties of High Porosity Metal Foams, Int. J. Heat Mass Transfer, 45, 1017-1031, 2002.
  • [10] Phanikumar, M. S. and Mahajan, R. L. : Non-Darcy natural convection in high Porosity metal foams, Int. J. Heat Mass Transfer, 45, 3781-3793, 2002.
  • [11] Haji-Sheikh, A. and Vafai, K.: Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts, Int. J. Heat Mass Transfer, 47, 1889-1905, 2004.
  • [12] Alvarez-Hernandez, A. R.: Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams, M.Sc. Thesis, University of Puerto Rico, 2005.
  • [13] Dukhan, N.: Correlations for the pressure drop for flow through metal foam, Exp. Fluids, 41, 665-672, 2006.
  • [14] Minkowycz, W. J. and Haji-Sheikh, A.: Heat transfer in parallel plates and circular porous passages with axial conduction, Int. J. Heat Mass Transfer, 49, 2381-2390, 2006.
  • [15] Kopanidis, A., Theodorakakos, A., Gavaises, E. and Bouris, D.: 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam, Int. J. Heat Mass Transfer, 53, 2539-2550, 2010.
  • [16] Chen C., Huang P. and Hwang H.: Enhanced forced convective cooling of heat sources by metal-foam porous layers, Int. J. Heat Mass Transfer, 58, 356-373, 2013.
  • [17] Bai, M. and Chung, J.N.: Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams, Int. J. Thermal Sciences, 50, 869-880, 2011.
  • [18] Dukhan, N. and Ali, M.: Strong wall and transverse size effects on pressure drop of flow through open-cell metal foam, Int. J. Thermal Sciences, 57, 85-91, 2012.
  • [19] Ranut, P., Nobilea, E. and Mancini L.: High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams, Applied Thermal Engineering, XXX, 1-11, 2013.
  • [20] Dukhan, N. and Chen, K.: Heat transfer measurements in metal foam subjected to constant heat flux, Experimental Thermal and Fluid Science, 32, 624-631, 2007.
  • [21] Bhattacharya, A., Calmidi, V. V. and Mahajan, R. L.: Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transfer, 45, 1017-1031, 2002.
  • [22] Calmidi, V. V.: Transport phenomena in high porosity metal foams, PhD. Thesis, University of Colorado Boulder CO 1998.
  • [23] Calmidi, V. V. and Mahajan, R. L.: The effective thermal conductivity of high porosity metal foams, ASME J. Heat Transfer, 121, 466-471, 1999.
  • [24] Koch, D. L. and Brady, J. F.: The effective diffusivity of fibrous media, AIChE J., 32, 575-591, 1986.
  • [25] Calmidi, V. V. and Mahajan, R. L.: Forced convection in high porosity metal foams, ASME J. Heat Transfer, 122, 557-565, 2000.
  • [26] Zhukauskas, A.: Heat Transfer from Tubes in Cross Flow, Advances in Heat Transfer, Academic Press, New York, vol. 8, 1972.
  • [27] Thomas, E. and Karan, K.: Methodology for determining volumetric convection coefficients in metallic foam monoliths coated with ceramic catalyst support, Thermal Issues in Emerging Technologies, ThETA 2, Cairo, Egypt, 2008.
  • [28] Calmidi, V. V. and Mahajan R. L.: The effective thermal conductivity of high porosity metal foams, ASME J. Heat Transfer, 121, 466-471, 1999.
  • [29] Koch, D. L. and Brady, J. F.: The effective diffusivity of fibrous media, AIChE J., 32, 575-591, 1986.
  • [30] Lee, D. Y. and Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media, International Journal of Heat and Mass Transfer, 42, 423-435, 1999.
  • [31] Kim, S. J. and Jang, S. P.: Effects of the Darcy number, the Prandtl number and the Reynolds number on the local thermal non-equilibrium, International Journal of Heat and Mass Transfer, 45, 3885-3896, 2002.
  • [32] Sullines, D. and Daryabeige, K.: Effective thermal conductivity of high porosity open cell nickel foam, 35th AIAA Thermophysics Conference, Anaheim CA, 2819, 12, 2001.
  • [33] Kim, S. J. and Kim, D.: Forced convection in microstructures for electronic equipment cooling, Journal of Heat Transfer, 121, 639-645, 1999.
  • [34] Minkowycz, W. J., Haji-Sheikh, A. and Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number, International Journal of Heat and Mass Transfer, 42, 3373-3385, 1999.
  • [35] Dukhan,N. and Carel, A. M.: A two-permeability approach for assessing flow properties in metal foam, Journal of Porous Mater, 8, 417-424, 2011.
  • [36] Xu, H., Gong, L., Huang, S. and Xu, M.: Non-equilibrium heat transfer in metal-foam solar collector with no-slip boundary condition, Int. J. Heat Mass Transf, 76, 357-365, 2014.
  • [37] Feng, S. S., Kuang, J. J.,Wen, T., Lu, T. J. and Ichimiya K.: An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transf, 77, 1063-1074, 2014.
  • [38] Solmus, I.: Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel, Applied Thermal Engineering, 78, 605-615, 2015.
  • [39] Angirasa, D.: Experimental investigation of forced convection heat transfer augmentation with metallic fibrous materials, Int. J. Heat Mass Transf, 45, 919-922, 2002.
  • [40] http://rsta.royalsocietypublishing.org/content/368/1917/1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12d45b55-bfe6-45b3-8c23-39f3bb5696bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.