PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of TiN content on microstructure and mechanical properties of ceramic particulate composite Si3N4–TiN

Identyfikatory
Warianty tytułu
PL
Wpływ zawartości TiN na mikrostrukturę i właściwości mechaniczne ceramicznego kompozytu ziarnistego Si3N4–TiN
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of study of the influence of the volume fraction of TiN phase on the microstructure and mechanical properties of the ceramic particulate composite Si3N4–TiN. Samples of the Si3N4–TiN composite containing 5, 10, 15 or 20 vol. % of TiN phase were obtained by sintering mixtures of TiN and Si3N4 powders and sintering additives (6 wt % aluminium oxide and 4 wt % of yttrium oxide). Two types of TiN powder differing in the degree of fragmentation were used. Sintering was conducted at a pressure of 25 MPa at 1750°C for 1 hour. The resulting materials were subjected to quantitative analysis of the microstructure in order to determine the effect of TiN volume fraction and kind of TiN powder used on the microstructure of composites. Binary images showing the Si3N4 grains or TiN particles were obtained by the processing and binarization of SEM gray images of composite microstructure using the Aphelion computer software. The values of selected stereological parameters determining the size, shape and uniformity of distribution of the TiN particles and the size and shape of the matrix grains were determined. The study of the composite microstructure showed that for both types of TiN powders the increase of TiN volume fraction does not cause significant changes in size and shape of the Si3N4 grains. The increase in volume fraction of TiN phase produces the increase in the average TiN particle size in the composite, but cause only a slight change in their shape. Titanium nitride particles in the composite were smaller and somewhat more isometric and more uniformly distributed in the matrix when fine TiN powder was used. Measurements of flexural strength σf and fracture toughness KIc of all materials samples were conducted to determine the effect of composite microstructure changes on mechanical properties. The flexural strength and fracture toughness of the composites increase with the volume fraction of TiN phase. Composites with finer TiN particles are preferable from the point of view of better flexural strength, but higher values of fracture toughness are obtained for composites with coarser TiN particles.
PL
W celu doskonalenia właściwości mechanicznych ceramiki z azotku krzemu tworzy się kompozyty ziarniste o osnowie z Si3N4, a jednym z takich materiałów jest kompozyt Si3N4–TiN. W kompozytach ziarnistych istotnymi zmiennymi mikrostrukturalnymi są m.in. udział objętościowy fazy rozproszonej, wielkość i kształt cząstek tej fazy oraz sposób ich rozmieszczenia w osnowie kompozytu. Celem pracy jest zbadanie wpływu udziału objętościowego fazy TiN oraz stopnia rozdrobnienia proszku TiN użytego do wytworzenia kompozytu Si3N4–TiN na jego mikrostrukturę oraz twardość, wytrzymałość na zginanie i odporność na kruche pękanie.
Rocznik
Strony
224--230
Opis fizyczny
Bibliogr. 29 poz., fig., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Material Science and Ceramics, Department of Ceramics and Refractory Materials, Krakow
autor
  • AGH University of Science and Technology, Faculty of Material Science and Ceramics, Department of Ceramics and Refractory Materials, Krakow
autor
  • AGH University of Science and Technology, Faculty of Material Science and Ceramics, Department of Ceramics and Refractory Materials, Krakow
  • AGH University of Science and Technology, Faculty of Material Science and Ceramics, Department of Ceramics and Refractory Materials, Krakow
Bibliografia
  • [1] Davidge R. W., Green T. J.: The strength of two phase ceramic/glass materials. J. Mater. Sci. 3 (1968) 629÷634.
  • [2] Yasuda K. K., Sekigguchi Y., Tatami J., Matsuo Y.: Derivation of crack path in particle-dispersed ceramic composites with finite element method. Proc. of the 2nd Int. Symp. on the Science Engineering Ceramics, CSJ Series – Publication of the Ceramic Society of Japan, Trans Tech Publication, Switzerland (1999) 577÷580.
  • [3] Górny G., Grabowski G., Rączka M., Rutkowski P., Stobierski L.: The effect of TiB2 volume fraction on microstructure and mechanical properties of SiC–TiB2 particulate composite. Inżynieria Materiałowa 4 (2014) 308÷315.
  • [4] Chermant J.-L.: Characterization of the microstructure of ceramics by image analysis. Ceramics International 12 (1986) 67÷80.
  • [5] Warren R., Sarin V. K.: Particulate ceramic-matrix composites. Wyd. Warren R., Blackie and Son Ltd., Glasgow and London (1992).
  • [6] Ryś J.: Stereologia materiałów. Fotobit Design, Kraków (1995).
  • [7] Kurzydłowski K. J., Ralph B.: The quantitative description of the microstructure of materials. CRC Press, New York (1999).
  • [8] Wojnar L.: Image analysis. Application in Materials Engineering. CRC Press, New York (1999).
  • [9] Hadada M., Blugan G., Kübler J., Rosset E., Rohr L., Michler J.: Tribological behaviour of Si3N4 and Si3N4–%TiN based composites and multilayer laminates. Wear 260 (2006) 634÷641.
  • [10] Young-Hag Koh, Hae-Won Kim, Hyoun-Ee Kim: Mechanical properties of three-layered monolithic silicon nitride–fibrous silicon nitride/boron nitride monolith. J. Am. Ceram. Soc. 85 (2002) 2840÷2842.
  • [11] Kitaoka S., Kawashima N., Suzuki T.: Fabrication of continuous-SiCfiber- reinforced SiAlON-based ceramic composites by reactive melt infiltration. J. Am. Ceram. Soc. 84 (2001)1945÷1951.
  • [12] Chih-Chin Lu., Headinger M. H., Majidi A. P., Tsu-Wei Chou.: Fabrication of a Nicalon TM fiber/Si3N4-based ceramic-matrix composite by the polymer pyrolysis method. J. Mater. Sci. 35 (24) (2000) 6301÷6308.
  • [13] Gogotsi Yu. G.: Review. Particulate silicon nitride-based composites. J. Mater. Sci. 29 (1994) 2541÷2556.
  • [14] Petzow G., Herrmann M.: Silicon nitride ceramics. High performance non-oxide ceramics. II ed. Jansen M., Structure and bonding, vol. 102, Springer-Verlag, Berlin, Heidelberg (2002).
  • [15] Ching-Huan Lee, Horng-Hwa Lu, Chang-An Wang, Nayak P. K., Jow-Lay Huang: Microstructure and mechanical properties of TiN/Si3N4 nanocomposites by spark plasma sintering (SPS). J. of Alloys and Compounds 508 (2010) 540÷545.
  • [16] Gaoa L., Lia J., Kusunose T., Niihara K.: Preparation and properties of TiN–Si3N4 composites. J. of the European Ceramic Society 24 (2004) 381÷386.
  • [17] Pierson H. O.: Handbook of refractory carbides and nitrides. Properties, characteristics, processing and applications. Noyes Publications, Westwood, New Jersey, USA (1996).
  • [18] Byong-Taek Lee, Yeu-Joo Yoon, Kap-Ho Lee: Microstructural characterization of electroconductive Si3N4–TiN composites. Materials Letters 47 (2001) 71÷76.
  • [19] Rożniatowski K.: Metody charakteryzowania niejednorodności rozmieszczenia elementów strukturalnych w materiałach wielofazowych. Prace Naukowe Politechniki Warszawskiej – Inżynieria Materiałowa. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 22 (2008).
  • [20] Ahmada N., Sueyosh H.: Microstructure and mechanical properties of silicon nitride–titanium nitride composites prepared by spark plasma sintering Materials Research Bulletin 46 (2011) 460÷463.
  • [21] Blugan G., Hadad M., Janczak-Rusch J., Kuebler J., Graule T.: Fractography, mechanical properties, and microstructure of commercial silicon nitride– titanium nitride composites. J. Am. Ceram. Soc. 88 (2005) 926÷933.
  • [22] Hampshire S., Pomeroy M. J.: Grain boundary glasses in silicon nitride: A review of chemistry, properties and crystallization. J. of the European Ceramic Society 32 (2012) 1925÷1932.
  • [23] Sun E. Y., Becher P. F., Plucknett K. P., Hsueh Ch-H., Alexander K. B., Waters S. B.: Microstructural design of silicon nitride with improved fracture toughness: II, Effects of yttria and alumina additives. J. of the American Ceramic Society 81 (1998) 2831÷2840.
  • [24] Lojanová S., Tatarko P., Chlup Z., Hnatko M., Dusza J., Lencés Z., Sajgalík P.: Rare-earth element doped Si3N4/SiC micro/nano-composites — RT and HT mechanical properties. J. of the European Ceramic Society 30 (2010) 1931÷1944.
  • [25] Hampshire S.: Oxynitride glasses. J. of the European Ceramic Society 28 (2008) 1475÷1483.
  • [26] Chunyan Tian, Hai Jiang, Ning Liu: Thermal shock behavior of Si3N4– TiN nano-composites. Int. J. of Refractory Metals and Hard Materials 29 (2011) 14÷20.
  • [27] Heon-Jin Choi, Kyeong-Sik Cho, June-Gunn Lee, Young-Wook Kim: Rcurve behavior of silicon nitride–titanium nitride composites. J. Am. Ceram. Soc. 80 (1997) 2681÷2684.
  • [28] Jow-Lay Huang, Ming-Tung Lee, Horng-Hwa Lu, Ding-Fwu Lii: Microstructure, fracture behavior and mechanical properties of TiN/Si3N4 composites. Materials Chemistry and Physics 45 (1996) 203÷210.
  • [29] Byong-Taek Lee, Dong-Hwi Jang, Taek-Soo Kim: Microstructural characterization of a hot pressed Si3N4–TiN composite studied by TEM. Materials Transactions 44 (2003) 1081÷1086.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12d123ed-9806-4bdb-a9ca-aaca5c49b908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.