Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In intelligent warehousing and logistics centers, efficient sorting and transportation of express parcels are critical tasks for daily operations. In order to handle the large number of parcels per day, existing inspection and sorting systems face challenges such as high computational costs, insufficient inspection accuracy and poor real-time response capability. These issues restrict the deployment of such systems on embedded devices and impact the overall efficiency of logistics operations. This is particularly urgent in intelligent sorting, where real-time intelligent recognition and efficient sorting transportation are crucial. In order to solve these problems, a lightweight YOLOv8-SCS-CE algorithm based on the YOLOv8n algorithm is proposed in this paper, which can quickly realize express and parcel detection. A lightweight module SCS is also used to improve the Shufflenetv2 network by utilizing the channel attention mechanism and nested structure to overcome the effect of the lightweight architecture on the detection accuracy. First, the SCS module is used to replace the backbone structure of the YOLOv8n network, which improves the Shufflenetv2 network using channel attention mechanisms and nested structures, overcoming the impact of lightweight architectures on detection accuracy. Next, to enhance the network’s feature extraction capability, the ECA attention mechanism is incorporated into the forward network of C2f, forming the C2f_ECA lightweight feature extraction module, which effectively solves the issue of extracting small defect features in complex backgrounds. Experimental results show that the YOLOv8-SCS-CE model reduces the number of parameters by 59.2%, decreases the computational complexity by 54.3%, and the weight file size is only 2.8MB, a reduction of 55.5% compared to the original files. The mAP@50 of the model is only 0.8% lower than that of the original mode. The lightweight network constructed in this study recognizes fast and few parameters, which provides a key technology for the courier parcel detection industry.
Czasopismo
Rocznik
Tom
Strony
179--192
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Qilu University of Technology (Shandong Academy of Sciences), Institute of Automation; Keyuan Road 19, Lixia, Jinan 250014, China
autor
- Qilu University of Technology (Shandong Academy of Sciences), Institute of Automation; Keyuan Road 19, Lixia, Jinan 250014, China
autor
- Qilu University of Technology (Shandong Academy of Sciences), Institute of Automation; Keyuan Road 19, Lixia, Jinan 250014, China
autor
- Silesian University of Technology; Krasiński 8, 40-019 Katowice, Poland
Bibliografia
- 1. Wang, J. & Lim, M.K. & Zhan, Y. & et al. An intelligent logistics service system for enhancing dispatching operations in an IoT environment. Transportation Research Part E: Logistics and Transportation Review. 2020. Vol. 135. P. 101886.
- 2. Matusiewicz, M. Logistics of the future - Physical internet and its practicality. Transportation Journal. 2020. Vol. 59(2). P. 200-214.
- 3. Tran-Dang, H. & Krommenacker, N. & Charpentier, P. & et al. Toward the internet of things for physical internet: Perspectives and challenges. IEEE internet of things journal. 2020. Vol. 7(6). P. 4711-4736.
- 4. Ha, N.T. & Akbari, M. & Au, B. Last mile delivery in logistics and supply chain management: a bibliometric analysis and future directions. Benchmarking: An International Journal. 2023. 30(4): Vol. 113. P. 1170.
- 5. Cipres, C. & de la Cruz, M.T. The physical internet from shippers perspective. Towards User-Centric Transport in Europe: Challenges, Solutions and Collaborations. 2019. P. 203-221.
- 6. Sładkowski, A. Using Artificial Intelligence to Solve Transportation Problems. First Edition. Cham: Springer. 2024. XII. 565 p. DOI: 10.1007/978-3-031-69487-5.
- 7. Moshood, T.D. & Sorooshian, S. The Physical Internet: A means towards achieving global logistics sustainability. Open Engineering. 2021. Vol. 11(1). P. 815-829.
- 8. Treiblmaier, H. & Mirkovski, K. & Lowry, P.B., et al. The physical internet as a new supply chain paradigm: a systematic literature review and a comprehensive framework. The International Journal of Logistics Management. 2020. Vol. 31(2). P. 239-287.
- 9. Sirignano, J. & MacArt, J.F. & Freund, J.B. DPM: A deep learning PDE augmentation method with application to large-eddy simulation. Journal of Computational Physics. 2020. Vol. 423. P. 109811.
- 10. Yeh, J.F. & Lin, K. M. & Lin, C.Y. et al. Intelligent mango fruit grade classification using alexnet-spp with mask r-cnn-based segmentation algorithm. IEEE Transactions on AgriFood Electronics. 2023. Vol. 1(1). P. 41-49.
- 11. Patnaik, S.K. & Babu, C.N. & Bhave, M. Intelligent and adaptive web data extraction system using convolutional and long short-term memory deep learning networks. Big Data Mining and Analytics. 2021. Vol. 4(4). P. 279-297.
- 12. Chen, F. & Li, S. & Han, J. & et al. Review of lightweight deep convolutional neural networks. Archives of Computational Methods in Engineering. 2024. Vol. 31(4). P. 1915-1937.
- 13. Han, J. & Yang, Y. & L-Net: lightweight and fast object detector-based ShuffleNetV2. Journal of Real-Time Image Processing. 2021. Vol. 18(6). P. 2527-2538.
- 14. Daubechies, I. & DeVore, R. & Foucart, S., et al. Nonlinear approximation and (deep) ReLU networks. Constructive Approximation. 2022. Vol. 55(1). P. 127-172.
- 15. Yu, G. & Yu, M. & Xu, C. Synchroextracting transform. IEEE Transactions on Industrial Electronics. 2017. Vol. 64(10). P. 8042-8054.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12cc7422-6d1d-43c9-ac0e-9d24829af7ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.