PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extraction of neodymium(III) from aqueous solutions by solvent extraction with Cyanex® 572

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research aims at studying the extractability of Nd(III) by Cyanex® 572 as a new extractant form from nitrate solutions. The effects of contact time, the concentration of nitrate ion, hydrogen ion, and extractant, and type of diluent were discussed, suggesting that the extraction of neodymium with Cyanex 572 was found to be a cation-exchange mechanism releasing three H+ ion during the extraction. Cation- exchange mechanism of Nd(III) with Cyanex 572 was studied using slope analysis. Hydrogen ion concentration strongly influences the extraction behavior of Nd(III) in the solvent extraction. Results showed that three moles of Cyanex 572 are incorporated in the extraction process of one-mole neodymium(III) from the aqueous solutions. The concentration of nitrate ion in the aqueous solution has positive effect on the extraction efficiency of neodymium due to the salting out effect. The type of diluent influences the extraction efficiency of Nd(III). Results indicated that non-polar diluents were suitable solvents for the extraction of neodymium(III).
Rocznik
Strony
127--135
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
  • Mining Engineering Department, Amirkabir University of Technology, Tehran, Iran
autor
  • Mining Engineering Department, Amirkabir University of Technology, Tehran, Iran
  • Department of Materials Engineering, Malek Ashtar \University of Technology, Shahin Shahr, Iran
autor
  • School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • ALLAHKARAMI, E., REZAI, B., 2021. A literature review of cerium recovery from different aqueous solutions. Journal of Environmental Chemical Engineering, 9(1), 104956.
  • ALLAHKARAMI, E., REZAI, B., 2019. Removal of cerium from different aqueous solutions using different adsorbents: A review. Process Safety and Environmental Protection, 124, 345-362.
  • BANDA, R., JEON, H. S., LEE, M. S., 2012. Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272. Hydrometallurgy, 121, 74-80.
  • EL-HEFNY, N., DAOUD, J., 2004. Extraction and separation of thorium (IV) and praseodymium (III) with Cyanex 301 and Cyanex 302 from nitrate medium. Journal of radioanalytical and nuclear chemistry, 261(2), 357-363.
  • GUPTA, B., MALIK, P., DEEP, A., 2002. Extraction of uranium, thorium and lanthanides using Cyanex-923: their separations and recovery from monazite. Journal of radioanalytical and nuclear chemistry, 251(3), 451-456.
  • GUPTA, B., MALIK, P., DEEP, A., 2003. Solvent extraction and separation of tervalent lanthanides and yttrium using Cyanex 923. Solvent extraction and ion exchange, 21(2), 239-258.
  • INDUSTRIES, C. (2015). CYANEX® 572. http://www.cytec.com/products/cyanex-572.
  • KANANI-JAZI, M. H., AKBARI, S., KISH, M. H., 2020. Efficient removal of Cr (VI) from aqueous solution by halloysite/poly (amidoamine) dendritic nano-hybrid materials: kinetic, isotherm and thermodynamic studies. Advanced Powder Technology, 31(9), 4018-4030.134 Physicochem. Probl. Miner. Process., 57(3), 2021, 127-135
  • KAO, H.-C., YEN, P.-S., JUANG, R.-S., 2006. Solvent extraction of La (III) and Nd (III) from nitrate solutions with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. Chemical Engineering Journal, 119(2-3), 167-174.
  • KISLIK, V. S., 2012. Solvent extraction: classical and novel approaches: Elsevier.
  • KOKARE, B. N., MANDHARE, A. M., ANUSE, M. A., 2010. Liquid-liquid extraction of cerium (IV) from salicylate media using N-7V-octylaniline in xylene as an extractant. Journal of the Chilean Chemical Society, 55(4), 431-435.
  • KUMARI, A., PANDA, R., LEE, J. Y., THRIVENI, T., JHA, M. K., PATHAK, D. D., 2019. Extraction of rare earth metals (REMs) from chloride medium by organo-metallic complexation using D2EHPA. Separation and purification technology, 227, 115680.
  • LEE, M.-S., SON, S. H., 2017. Separation of light rare earth elements by solvent extraction with a mixture of cationic and tertiary amine. Journal of the Korean Institute of Resources Recycling, 26(2), 3-10.
  • LIU, Y., JEON, H. S., LEE, M. S., 2014. Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants. Hydrometallurgy, 150, 61-67.
  • LU, D., HORNG, J. S., HOH, Y. C., 1989. The separation of neodymium by quaternary amine from didymium nitrate solution. Journal of the Less Common Metals, 149, 219-224.
  • MISHRA, S., SAHU, S. K., 2016. Solvent extraction of Ce (III) from nitric acid medium using binary mixture of PC 88A and Cyanex 921. Hydrometallurgy, 166, 252-259.
  • NIE, H., WANG, Y., WANG, Y., ZHAO, Z., DONG, Y., SUN, X., 2018. Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572. Hydrometallurgy, 175, 117-123.
  • PARK, H.-J., TAVLARIDES, L. L., 2010. Adsorption of neodymium (III) from aqueous solutions using a phosphorus functionalized adsorbent. Industrial & engineering chemistry research, 49(24), 12567-12575.
  • PAVON, S., KUTUCU, M., COLL, M. T., FORTUNY, A., SASTRE, A. M., 2018. Comparison of Cyanex 272 and Cyanex 572 for the separation of Neodymium from a Nd/Tb/Dy mixture by pertraction. Journal of Chemical Technology & Biotechnology, 93(8), 2152-2159.
  • QUINN, J. E., SOLDENHOFF, K. H., STEVENS, G. W., LENGKEEK, N. A., 2015. Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy, 157, 298-305.
  • REDDY, M. L. P., BHARATHI, J. R. B., PETER, S., RAMAMOHAN, T. R., 1999. Synergistic extraction of rare earths with bis (2, 4, 4-trimethyl pentyl) dithiophosphinic acid and trialkyl phosphine oxide. Talanta, 50(1), 79-85.
  • RHO, B.-J., SUN, P.-P., CHO, S.-Y., 2020. Recovery of neodymium and praseodymium from nitrate-based leachate of permanent magnet by solvent extraction with trioctylphosphine oxide. Separation and purification technology, 238, 116429.
  • RIAÑO, S., FOLTOVA, S. S., BINNEMANS, K., 2020. Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments. Rsc Advances, 10(1), 307-316.
  • RICE, N. M., & SMITH, M. R., 1975. Recovery of zinc, cadmium and mercury (II) from chloride and sulphate media by solvent extraction. Journal of Applied Chemistry and Biotechnology, 25(5), 379-402.
  • ROY, S., BASU, S., ANITHA, M., SINGH, D. K. , 2017. Synergistic extraction of Nd (III) with mixture of 8-hydroxyquinoline and its derivative with di-2-ethyl hexyl phosphoric acid in different diluents. Korean Journal of Chemical Engineering, 34(6), 1740-1747.
  • SAJI, J., REDDY, M. L. P. (2003). Selective extraction and separation of titanium (IV) from multivalent metal chloride solutions using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Separation science and technology, 38(2), 427-441.
  • SEPAHVAND, P., ABDIZADEH, G. R., NOORI, S., 2020. Inverse design of an irregular-shaped radiant furnace using neural network and a modified hybrid optimization algorithm. Thermal Science and Engineering Progress, 20, 100730.
  • SPEDDING, F. H., VOIGT, A. F., GLADROW, E. M., SLEIGHT, N. R., POWELL, J. E., WRIGHT, J. M., BUTLER, T.A., FIGARD, P., 1947. The Separation of Rare Earths by Ion Exchange. 1, 2 II. Neodymium and Praseodymium. Journal of the American Chemical Society, 69(11), 2786-2792.
  • SUN, X., ZHAO, J., MENG, S., LI, D., 2005. Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis (2, 4, 4-trimethylpentyl) phosphinic acid. Analytica Chimica Acta, 533(1), 83-88.
  • TUNSU, C., PETRANIKOVA, M., GERGORIĆ, M., EKBERG, C., RETEGAN, T., 2015. Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations.Hydrometallurgy, 156, 239-258.135 Physicochem. Probl. Miner. Process., 57(3), 2021, 127-135
  • WANG, Y., LI, F., ZHAO, Z., DONG, Y., SUN, X., 2015. The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Separation and purification technology, 151, 303-308.
  • YOON, H.-S., KIM, C.-J., CHUNG, K. W., LEE, J.-Y., SHIN, S. M., LEE, S.-J., JOE, A-R., LEE, S.-I., YOO, S.-J., 2014. Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore. Korean Journal of Chemical Engineering, 31(10), 1766-1772.
  • ZEPF, V., 2013. Rare earth elements: a new approach to the nexus of supply, demand and use: exemplified along the use of neodymium in permanent magnets: Springer Science & Business Media.
  • ZHANG, L., XIE, F., LI, S., YIN, S., PENG, J., JU, S. 2015., Solvent extraction of Nd (III) in a Y type microchannel with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester. Green Processing and Synthesis, 4(1), 3-10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12cb075d-25e7-496d-903e-33e44acca143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.