Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As part of the work the high-pressure sorptomat - a novel apparatus for sorption tests under conditions of high gas pressure was developed. The sorption measurement is carried out using the volumetric method, and the precise gas flow pressure regulator is used in the device to ensure isobaric conditions and regulate the sorption pressure in the range of 0-10 MPa. The uniqueness and high precision of sorption measurements with the constructed apparatus are ensured by the parallel use of many pressure sensors with a wide measurement range as well as high precision of measurement - due to the use of precise pressure sensors. The obtained results showed, i.a. that the time of reaching the isobaric conditions of the measurement is about 6-7 seconds and it is so short that it can be considered a quasi-step initiation of sorption processes. Moreover, the results of the measurement pressure stabilization tests, during the CO2 sorption test on activated carbon, have shown that the built-in pressure regulator works correctly and ensures isobaric sorption measurement conditions with the precision of pressure stabilization of ±1% of the measurement pressure. The maximum range of sorption measurement using the high-pressure sorptomat is 0-86 400 cm3/g, and the maximum measurement uncertainty is ±2% of the measured value. The activated carbon sample used for the tests was characterized by a high sorption capacity, reaching 104.4 cm3/g at a CO2 pressure of 1.0 MPa.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
607--620
Opis fizyczny
Bibliogr. 29 poz., fot., rys., wykr., wzory
Twórcy
autor
- Strata Mechanics Research Institute of the Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
autor
- Strata Mechanics Research Institute of the Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
autor
- Strata Mechanics Research Institute of the Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
Bibliografia
- [1] Sing, K. S. W. (1998). Adsorption methods for the characterization of porous materials. Advances in Colloid and Interface Science, 76-77, 3-11. https://doi.org/10.1016/S0001-8686(98)00038-4
- [2] Li, H., Wang, S., Zeng, Q., Kang, J., Guan, W., & Li, W. (2021). Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat. Processes, 9(11), 1971. https://doi.org/10.3390/pr9111971
- [3] Wierzbicki, M., Pajdak, A., Baran, P., & Zarębska, K. (2019). Isosteric heat of sorption of methane on selected hard coals. Przemysł Chemiczny, 98(4), 625-629. https://doi.org/10.15199/62.2019.4.22 (in Polish)
- [4] Beitollahi, A., & Sharif Sheikhaleslami, M. A. (2016). A novel approach for development of graphene structure in mesoporous carbon of high specific surface area. Carbon, 107, 440-447. https://doi.org/10.1016/j.carbon.2016.06.023
- [5] Konwar, R. J., & De, M. (2014). Synthesis of high surface area silica gel templated carbon for hydrogen storage application. Journal of Analytical and Applied Pyrolysis, 107, 224-232. https://doi.org/10.1016/j.jaap.2014.03.005
- [6] Fan, L., & Liu, S. (2021). A novel experimental system for accurate gas sorption and its application to various shale rocks. Chemical Engineering Research and Design, 165, 180-191. https://doi.org/10.1016/j.cherd.2020.10.034
- [7] Skoczylas, N., Kudasik, M., Wierzbicki, M., & Murzyn, T. (2015). New instruments and methods for analysing the coal-methane system. Studia Geotechnica et Mechanica, 37(1), 85-92. https://doi.org/10.1515/sgem-2015-0010
- [8] Olajossy, A. (2014). The influences of the rank of coal on methane sorption capacity in coals. Archives of Mining Sciences, 52(2), 509-516. https://doi.org/10.2478/amsc-2014-0037
- [9] Dudzińska, A., Żyła, M., & Cygankiewicz, J. (2013). Influence of the metamorphism grade and porosity of hard coal on sorption and desorption of propane. Archives of Mining Sciences, 58(3), 867-879. https://doi.org/10.2478/amsc-2013-0060
- [10] Voskuilen, T., Zheng, Y., & Pourpoint, T. (2010). Development of a Sievert apparatus for characterization of high-pressure hydrogen sorption materials. International Journal of Hydrogen Energy, 35(19), 10387-10395. https://doi.org/10.1016/j.ijhydene.2010.07.169
- [11] Pajdak, A., Zarębska, K., Walawska, B., & Szymanek, A. (2015). Purification of flue gases from combustion of solid fuels with sodium sorbents. Przemysł Chemiczny, 94(3), 382-386. https://doi.org/10.15199/62.2015.3.25 (in Polish)
- [12] Karimi, M., Rodrigues, A. E., & Silva, J. A. C. (2021). Designing a simple volumetric apparatus for measuring gas adsorption equilibria and kinetics of sorption. Application and validation for CO2, CH4 and N2 adsorption in binder-free beads of 4A zeolite. Chemical Engineering Journal, 425, 130538. https://doi.org/10.1016/j.cej.2021.130538
- [13] Ronduda, H., Zybert, M., Patkowski, W., Ostrowski, A., Jodłowski, P., Szymański, D., Kępiński, L., & Raróg-Pilecka, W. (2022). Development of cobalt catalyst supported on MgO-Ln2O3 (Ln 1/4 La, Nd, Eu) mixed oxide systems for ammonia synthesis. International Journal of Hydrogen Energy, 47(10), 6666-6678. https://doi.org/10.1016/j.ijhydene.2021.12.022
- [14] Dymek, K., Kurowski, G., Kuterasiński, Ł., Jędrzejczyk, R., Szumera, M., Sitarz, M., Pajdak, A., Kurach, Ł., Boguszewska-Czubara, A., & Jodłowski, P. (2021). In search of effective UiO-66 metal organic frameworks for artificial kidney application. ACS Applied Materials & Interfaces, 13(38), 45149-45160. https://doi.org/10.1021/acsami.1c05972
- [15] Pluta, K., Florkiewicz, W., Malina, D., Rudnicka, K., Michlewska, S., Królczyk, J. B., & Sobczak-Kupiec, A. (2021). Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Measurement, 171, 108733. https://doi.org/10.1016/j.measurement.2020.108733
- [16] Rezende, C. G. F., Amaral, R. A., Habert, A. C., & Borges, C. P. (2020). Sorption thermosiphon apparatus (STA): A novel and accurate system for gas mixtures sorption measurements. Polymer Testing, 84, 106382. https://doi.org/10.1016/j.polymertesting.2020.106382
- [17] Namiesnik, J., Torres, L., & Mathieu, J. (1984). Laboratory apparatus for evaluation of sorption capacity of solids. Science of the Total Environment, 39(3), 281-290. https://doi.org/10.1016/0048-9697(84)90084-6
- [18] Shade, D., Bout, B. W. S., Sholl, D. S., & Walton, K. S. (2022). Opening the Toolbox: 18 Experimental Techniques for Measurement of Mixed Gas Adsorption. Industrial & Engineering Chemistry Research, 61, 2367-2391. https://doi.org/10.1021/acs.iecr.1c03756
- [19] Karimi, M., Silva, J. A. C., Gonçalves, C. N. d. P., Diaz de Tuesta, J. L., Rodrigues, A. E., & Gomes, H. T. (2018). CO2 Capture in chemically and thermally modified activated carbons using breakthrough measurements: experimental and modeling study. Industrial & Engineering Chemistry Research, 57(32), 11154-11166. https://doi.org/10.1021/acs.iecr.8b00953
- [20] Kudasik, M. (2016). The manometric sorptomat - an innovative volumetric instrument for sorption measurements performed under isobaric conditions. Measurement Science and Technology, 27(3), 035903. https://doi.org/10.1088/0957-0233/27/3/035903
- [21] Pini, R., Ottiger, S., Rajendran, A., Storti, G., & Mazotti, M. (2006). Reliable measurement of near-critical adsorption by gravimetric method. Adsorption, 12, 393-403. https://doi.org/10.1007/s10450-006-0567-8
- [22] Kudasik, M. (2017). Results of comparative sorption studies of the coal-methane system carried out by means of an original volumetric device and a reference gravimetric instrument. Adsorption, 23, 613-626. https://doi.org/10.1007/s10450-017-9881-6
- [23] Karbownik, M., Krawczyk, J., & Schlieter, T. (2020). The unipore and bidisperse diffusion models for methane in hard coal solid structures related to the conditions in the Upper Silesian Coal Basin. Archives of Mining Sciences, 65(3), 591-603. https://doi.org/10.24425/ams.2020.134136
- [24] Liu, A., Liu, P., & Liu, S. (2020). Gas diffusion coefficient estimation of coal: A dimensionless numerical method and its experimental validation. International Journal of Heat and Mass Transfer, 162, 120336. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120336
- [25] Crank, J. (1975). The Mathematics of Diffusion (2nd ed.). Oxford University Press. http://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/Xe_damage/Crank-The-Mathematics-of-Diffusion.pdf
- [26] Mohammad, S., Fitzgerald, J., Robinson Jr., R. L., & Gasem, K. A. M. (2009). Experimental uncertainties in volumetric methods for measuring equilibrium adsorption. Energy Fuels, 23(5), 2810-2820. https://doi.org/10.1021/ef8011257
- [27] Tang, X., & Ripepi, N. (2017). High pressure supercritical carbon dioxide adsorption in coal: Adsorption model and thermodynamic characteristics. Journal of CO2 Utilization, 18, 189-197. https://doi.org/10.1016/j.jcou.2017.01.011
- [28] Pini, R., Ottiger, S., Burlini, L., Storti, G., & Mazzotti, M. (2010). Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature. International Journal of Greenhouse Gas Control, 4(1), 90-101. https://doi.org/10.1016/j.ijggc.2009.10.019
- [29] Fitzgerald, J. E., Pan, Z., Sudibandriyo, M., Robinson Jr., R. L., Gasem, K. A. M., & Reeves, S. (2005). Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel, 84(18), 2351-2363. https://doi.org/10.1016/j.fuel.2005.05.002
Uwagi
1. The work was carried out under the Own Research Program, project no. FBW/2019/01, financed by the Strata Mechanics Research Institute of the Polish Academy of Sciences.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12c17daf-5b27-47dd-9e12-d843d57879fb