Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Consider the linear discrete-time fractional order systems with uncertainty on the initial state {Δαxi+1=Axi+Bui, i≥0x0=τ0+τ̂0∈Rn, τ̂0∈Ωyi=Cxi, i≥0}, where A,B and C are appropriate matrices, x0 is the initial state, yi is the signal output, α the order of the derivative, τ0 and τ̂0 are the known and unknown part of x0, respectively, ui=Kxi is feedback control and Ω⊂Rn is a polytope convex of vertices w1,w2,...,wp. According to the Krein–Milman theorem, we suppose that τ̂0=Σ pj=1αjwj for some unknown coefficients α1≥0,...,αp≥0 such that Σ pj=1αj=1. In this paper, the fractional derivative is defined in the Grünwald–Letnikov sense. We investigate the charac-terisation of the set χ(τ̂0,ϵ) of all possible gain matrix K that makes the system insensitive to the unknown part τ̂0, which means χ(τ̂0,ϵ)={K∈Rm×n / ∥∂yi∂αj∥≤ϵ, ∀j=1,...,p,∀i≥0}, where the inequality ∥∂yi∂αj∥≤ϵ showing the sensitivity of yi relative-ly to uncertainties {αj}j=1p will not achieve the specified threshold ϵ>0. We establish, under certain hypothesis, the finite determination of χ(τ̂0,ϵ) and we propose an algorithmic approach to made explicit characterisation of such set.
Czasopismo
Rocznik
Tom
Strony
227--235
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
- Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science, Hassan II University, Casablanca, Sidi Othman BP 7955, Morocco
autor
- Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science, Hassan II University, Casablanca, Sidi Othman BP 7955, Morocco
autor
- Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science, Hassan II University, Casablanca, Sidi Othman BP 7955, Morocco
autor
- Faculty of Sciences Ben M’Sik, Department of Mathematics and Computer Science, Hassan II University, Casablanca, Sidi Othman BP 7955, Morocco
Bibliografia
- 1. Abdelhak A. , M. Rachik M. (2019), Model reduction problem of linear discrete systems: Admissibles initial states, Archives of Control Sciences, volume 29(LXV), no. 1, pages 41-55, 2019.
- 2. Abdelilah LarracheL., Mustapha LhousL., Soukaina Ben B.RhilaR., Mostafa Rachik R. Abdessamad TridaneT. (2020), An output sensitivity problem for a class of linear distributed systems with uncertain initial state, Archives of Control Sciences, volume 30(LXVI), no. 1, pages 139-155, 2020.
- 3. Amine El Bhih.B., Youssef BenfatahB., Mostafa RachikR. (2020), Exact determination of maximal output admissible set for a class of semilinear discrete systems, Archives of Control Sciences, ACS volume 30(LXVI), no. 3, pages 523-552, 10.24425/acs.2020.134676, 2020.
- 4. Andrzej Dzielinski A., and Dominik Sierociuk D. (2008), Stability of Discrete Fractional Order State-space Systems. Journal of Vibration and Control, 14: 1543, 2008.
- 5. Arild Thomson A. (2007), International journal of systems science, Identifiability of dynamic systems, volume 9, pages 813-825, Issue 2007.
- 6. Balatif, O., Rachik, M., Labriji, E. houssine, Rachik, Z. (2016). ), Optimal control problem for a class of bilinear systems via block pulse functions. IMA Journal of Mathematical Control and Information, dnw005. doi:10.1093/imamci/dnw005.
- 7. Buslowicz M. (1983), On some properties of the solution of state equation of discrete-time systems with delays, Zesz.Nauk. Polit. Bial., Elektrotechnika, vol. 1, pp. 17-29, 1983 in Polish.
- 8. Chi-Tsong ehenE. (2008), Analog and Digital control system design transfer-function, state space, Algebraic Methods. State University of New York at Stony Broak, Springer 2008.
- 9. Chraïbi, L., Karrakchou, J., Rachik, M., Ouansafi, A. (2006),. Linear quadratic control problem with a terminal convex constraint for discrete-time distributed systems. IMA Journal of Mathematical Control and Information, 23(3), 347-370. doi:10.1093/imamci/dni063.
- 10. D.W.Gu D.W., P.Hr.Petkov P.Hr. and, M.M.Konstantinov M.M. (2005), Robust control design with Matlab, Springer 2005..
- 11. Debnath L. (2003. ), Recent Applications of Fractional Calculus to Science and Engineering. IJMMS, Hindawi Publishing, volume 54, pp. 3413-3442, 2003.
- 12. Dórea, C. E. T., and Hennet, J. C. (1996), Computation of Maximal Admissible Sets of Constrained Linear Systems, Proceedings of the 4th IEEE Mediterranean Symposium on New Directions on Control and Automation, Maleme, Greece, pp. 286291, 1996.
- 13. Dzieliński and A.D., Sierociuk D. (2005), Adaptive Feedback Control of Fractional Order Discrete-Time State-Space Systems. Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC’05, 2005.
- 14. Ferreira, R.A.C., and Torres, D.F.M. (2011), Fractional h-Difference Equations Arising from the Calculus of Variations, Applicable Analysis and Discrete Mathematics, 5, 110-121, 2011.
- 15. Franklin (2001), Feedback control of dynamic systems, 5th edition, springer 2001.
- 16. Gilbert E. G. and , Tan K. T. (1991), Linear systems with state and control constraints: the theory and application of maximal output admissible sets, in IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008-1020, Sept 1991.
- 17. Haim BrezisB., Functional Analysis, Sobolev Spaces and Partial Differential Equations, ISBN 978-0-387-70913-0, doi:10.1007/978-0-387-70914-7.
- 18. Hilfer, R., ed. (2000), Application of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- 19. J.L.Lions J.L. (1988, ), Sur les sentinelles des systèmes distribu-és.C.R.A.S. Paris, t. 307. Le cas des conditions initiales incomplètes, p. 819-893. Conditions frontières, termes sources. coefficients incomplètement connus, p.865-870, 1988..
- 20. Joycer OsorioO., Hamid R. OssarehO. (2018), A Stochastic Approach to Maximal Output Admissible Sets and Reference Governors, Control Technology and Applications (CCTA) 2018 IEEE Conference on, pp. 704-709, 2018.
- 21. Kaczorek, T. (2007), Reachability and Controllability to Zero of Cone Fractional Discrete-time Systems, Archives of Control Sciences, 17, 357-367, 2007.
- 22. Kaczorek, T. (2008), Reachability of Fractional Positive Continuous-time Linear Systems, International Journal of Applied Mathematics and Computer Science, 18, 223-228, 2008.
- 23. Kauffmann. M, Bretthawer. G., Identifiability of the linear closed loop systems, Control Systems, Robotics and Automation, volume V, pages 127-138.
- 24. Kilbas A. A., Srivastava H. M. and , Trujillo. J. J. (2006), Theory and Application of Fractional Differential Equations North Holland Mathematics Studies, Editor Jan van Mill, Elsevier, 2006.
- 25. Kolmanovsky I., Gilbert E.G. (1998), Theory and computation of disturbance invariance sets for discrete-time linear systems, Mathematical Problems in Engineering: Theory, Methods and Applications, vol. 4, pp. 317-367, 1998.
- 26. Lions J.L. (1992), Sentinelles pour les systèmes distribués à données incomplètes, Recherches en Mathematiques Appliquées 21, Masson, Paris, 1992.
- 27. Lions, J.L. (1988), Sentinels for periodic distributed systems. Chinese Annals of Math B. Vol. 10. p 213-225.
- 28. Namerikawa T., W. Shinozuka W. , and M., Fujita M. (2004), : Disturbance and Initial State Uncertainty Attenuation Control for Magnetic Bearings, In Proceedings 9th International Symposium on Magnetic Bearings, pp. 3-6, 2004..
- 29. Ogata Katsuhiko O. (1995), Discrete time control systems, Prentice Hall internatiounal editions 1995.
- 30. Oldham K. B. and ., J. Spanier J. (1974),. The Fractional Calculus. Academic Press, 1974.
- 31. Podlubny I. (1999), Fractional Differential Equations. Academic Press, 1999.
- 32. Rachik M., M. Lhous M., A. Tridane A. (2002), On the Maximal Output Admissible Set for a Class of Nonlinear Discrete Systems, Systems Analysis Modelling Simulation, 42:11, 1639-1658, DOI: 10.1080/716067174.
- 33. Rachik, M., Lhous, M. (2016), An observer-based control of linear systems with uncertain parameters. Archives of Control Sciences, 26(4), 565-576. doi:10.1515/acsc-2016-0031, 2016.
- 34. Robert L.Payne R.L., Graham C.GoodwinG. (2007), International journal of control, On the identifiability of linear systems, volume 20, Issues 5, 2007, pages 865-868.
- 35. Rosario ToscanoT. (2005), Commande et diagnostic des systèmes dynamiques, Ellipses 2005..
- 36. Sawadogo S. (2020), Control of a migration problem of a population by the sentinel method, Journal of Nonlinear Evolution Equations and Applications, Volume 2020, Number 3, pp. 37-53, March 2020..
- 37. Sierociuk, D., and Dzieliński, A. (2006, ), Fractional Kalman Filter Algorithm for the States, Parameters and Order of Fractional System Estimation, International Journal of Applied Mathematics and Computer Science, 16, 129-140, 2006.
- 38. Yamamoto K. (2019), Time-variant feedback controller based on capture point and maximal output admissible set of a humanoid, Advanced Robotics, 33:18, 944-955, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12bbf75a-93c0-4ff9-bd93-c61c11651e2d