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Abstract: Consider the linear discrete-time fractional order systems with uncertainty on the initial state {

Δαxi+1 = Axi + Bui,    i ≥ 0

x0 = τ0 + τ̂0 ∈ ℝ
n,    τ̂0 ∈ Ω

yi = Cxi,    i ≥ 0
, 

where A, B and C are appropriate matrices, x0 is the initial state, yi is the signal output, α the order of the derivative, τ0 and τ̂0 are the 

known and unknown part of x0, respectively, ui = Kxi is feedback control and Ω ⊂ ℝn is a polytope convex of vertices w1, w2, . . . , wp. 

According to the Krein–Milman theorem, we suppose that  τ̂0 = ∑  
p

j=1
αjwj for some unknown coefficients α1 ≥ 0, . . . , αp ≥

0    such that    ∑  
p

j=1
αj = 1. In this paper, the fractional derivative is defined in the Grünwald–Letnikov sense. We investigate the charac-

terisation of the set χ(τ̂0, ϵ) of all possible gain matrix K that makes the system insensitive to the unknown part τ̂0, which means  

χ(τ̂0, ϵ) = {K ∈ ℝ
m×n / ∥

∂yi

∂αj
∥≤ ϵ,   ∀j = 1, . . . , p, ∀i ≥ 0}, where the inequality  ∥

∂yi

∂αj
∥≤ ϵ  showing the sensitivity of  yi relative-

ly to uncertainties  {αj}j=1
p
 will not achieve the specified threshold ϵ > 0. We establish, under certain hypothesis, the finite determination 

of  χ(τ̂0, ϵ) and we propose an algorithmic approach to made explicit characterisation of such set. 

Key words: fractional order systems, output sensitivity, discrete-time systems, maximal output set admissible uncertainty

1. INTRODUCTION 

Fractional calculus is an extended version of the traditional in-
teger order calculus in which the definition of derivatives is given 
to a non-integer order. The non-integer derivative concept is used 
increasingly for modelling of real systems behaviour in different 
disciplines of engineering and science (Debnath, 2003). These 
systems have long-memory transients and hereditary properties 
that can be more accurately described by fractional-order models. 
In the recent past, there has been an increasing focus on discrete-
time fractional systems (Kaczorek, 2007; Kaczorek, 2008; 
Sierociuk and Dzieliński, 2006; Ferreira and Torres, 2011). Some 
important developments of the theory of fractional calculus are 
presented in Kilbas et al., (2006) and Oldham and Spanier (1974). 

On the other hand, undesirable parameters appeared during 
modelling a system; consequently such parameters could have an 
impact on various elements of the system including initial condi-
tions, control, dynamic, and observations. To deal with this prob-
lem, a variety of approaches have been developed by research-
ers, including the theory of sentinel (Lions), the detectability in 
Franklin (2001) and Ogata (1995), identifiability in Thomson 
(2007); Kauffmann and Bretthawer; and Robert and Graham 
(2007), the H∞ control theory in Chi-Tsong) 2008) and the fre-
quency domain and robustness (Rosario, 2005; Gu et al., 2005). 

 

1.1. Related work 

Concerning the sensitivity of the system output to the disturb-
ance, the readers can refer to Larrache et al. (2020); Rachik and 
Lhous (2016); Balatif et al. (2016); and Chraïbi et al. (2006). Lar-
rache et al. (2020) considered an infinite dimensional linear sys-
tem described as  

{

ẋ(t) = Ax(t),        t ≥ 0,

x(0) = x0 = α1ω1 + β1ω2 ,

yi = Cxi + Dvi,    i ≥ 0,

 (1) 

where x(t) ∈ L2(Ω), 1ωi  is the indicator function, and Ω is an 

open bounded of ℝn such that Ω = ω1 ∪ ω2 and ω1 ∩ ω2 =
⌀. The operator A generates a continuous strongly semigroup 
{S(t)}t≥0 on the space L2(Ω), vi = Kxi,    i ≥ 0 feedback 

control, K ∈ ℒ(L2(Ω), ℝp). The initial state x0 is supposed to be 
known on ω1 but not on ω2. The authors suggest a method to 

identify within these controls law vi,    i ≥ 0 making the system 

insensitive to the impact of these unknown parameters β. The 
case of the disturbances infecting a linear system’s initial state 
has been investigated in Kolmanovsky and Gilbert (1998) and 
Namerikawa et al. (2004). 

The sentinel theory was initiated and developed by Lions in 
(Lions, 1992; Lions, 1988). Sawadogo (2020) have used the 
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sentinel method to control the migration by studying the dynamics 
of a single species population and whose initial distribution is 
unknown. 

In the literature, the notion of maximal output set is of great 
significant in the area of control and analysis of linear and nonlin-
ear systems. Numerous studies have been carried out on the 
construction of the maximal output set (El Bhih et al., 2020; 
Yamamoto, 2019; Osorio and Ossareh, 2018; Abdelhak and 
Rachik, 2019; Gilbert and Tan, 1991). Different algorithms have 
been included in the research literature to specify the maximal 
state constraint sets (Gilbert and Tan, 1991; Dórea and Hennet, 
1996).  

1.2. Problem statement 

A fundamental requirement for most dynamical systems is to 
keep a given output function insensitive to the disturbances. In 
this paper, we suppose that the initial state of the system is com-

posed of two parts: the unknown part noted as τ̂0 and the known 
part noted as τ0. We propose a new technique to characterise the 

set χ(τ̂0, ϵ) of all possible gain matrix K, based on the maximal 

output set Υ(K, ϵ), so that the sensitivity of the resulting system 
output would be relatively tolerable, that is, make the system 

insensitive to the unknown part τ̂0 of the initial state x0, of com-
mensurate fractional order discrete-time controlled linear systems 
which are modelled by equations of fractional state space. To the 
best of our knowledge, the output sensitivity of such systems has 
not been treated yet. We propose some new sufficient conditions 
that ensure the finite determination of the set χ(τ̂0, ϵ). Moreover, 
we present an effective algorithm to obtain the maximal output set 

Υ(K, ϵ) and then the set χ(τ̂0, ϵ). The algorithm having theoreti-
cal convergence properties are provided in Gilbert and Tan 
(1991). 

Therefore, we study a discrete-time linear control systems of 
fractional order with uncertainty on the initial state, evolving on 

ℝn. More precisely, we consider the system as  

{
Δαxi+1 = Axi + Bui,    i ≥ 0

x0 = τ0 + τ̂0 ∈ ℝ
n  (2) 

The corresponding output is  

yi = Cxi,    i ≥ 0 (3) 

where A is a matrix of order n × n, the system dynamics, B is the 

input matrix of order n × m and C is the output matrix of order 

p × n; α is the order of the derivative, τ0 is the known part, τ̂0 is 
the unknown part and ui = Kxi is the feedback control. 

The remainder of this paper is organised as follows: In Section 
2, we recall a fundamental definition of fractional derivatives 
(Grünwald-Letnikov), then we consider the discrete-time system 
proposed in Dzieliński and Sierociuk (2005). With uncertainty on 
the initial state, we recall the Krein–Millman theorem and some 
definitions. Section 3 deals with the characterisation of the set of 
all possible gain matrices which make the system insensitive to 
the unknown part, based on the maximal output set. New suffi-
cient conditions are provided to show the finite determination of 
such set. In Section 4, we propose an algorithm approach to 
identify the index of admissibility. We illustrate some examples 
and numerical simulations in Section 5. We conclude the paper by 
in Section 6. 

Notation:  ℝn the set of real vectors with n components, 

ℒ(ℝn, ℝn) the set of real matrices of order n × n, ℕ the set of 

nonnegative integers, σs
k = {s, s + 1, . . . , k} ⊂ ℕ where s ≤ k, 

In denotes the identity matrix in ℒ(ℝn, ℝn). The components of 
a vector b are noted as (b)j and the components of a matrix A 

are noted as (A)ij.  

2. FRACTIONAL CALCULUS AND DYNAMIC MODELS 

To begin our work, we will introduce certain basic notions 
concerning the fractional calculus that are utilised along the paper. 
The definition of the discrete fractional derivative in this paper is 
as follows: Grünwald–Letnikov (Oldham and J. Spanier, 1974; 
Podlubny, 1999).   
Definition 1. The Grünwald–Letnikov (backward) difference of 
fractional order α of the function x(. ) at k ∈ [0, +∞[ is given as 

Δαx(k) =
1

hα
∑  k
j=0 (−1)

j (
α
j ) x(k − j), (4) 

where the order of the derivative α ∈ ]0,1[, h ∈ ℝ∗+ is a sam-
pling period taken equal to unity in all what follows, and k ∈ ℕ  is 
the number of samples for which the approximation of the deriva-
tive is calculated.  

The term (
α
j ) in Definition 2 can be obtained from the follow-

ing relation: 

(
α
j ) = {

1 for j = 0,
α(α−1)…(α−j+1)

j!
for j > 0.

 (5) 

Let us consider now the discrete-time linear fractional order 
system as defined in Dzieliński and Sierociuk (2005), described as  

{

Δαxi+1 = Axi + Bui,

x0 = τ0 + τ̂0 ∈ ℝ
n

 (6) 

where A ∈ ℒ(ℝn, ℝn) is the system dynamics, B ∈ ℒ(ℝm, ℝn) 
is the input matrix and C ∈ ℒ(ℝn, ℝp) is the output matrix; α is 

the order of the derivative, τ0 is the known part, τ̂0 is the un-
known part and  

xi =

(

 

xi
1

xi
2

⋮
xi
n)

 ∈ ℝn 

is the state variable. 
The associated output function is  

yi = Cxi ∈ ℝ
p 

Its initial value is denoted by x0. The control low (feedback 
control) is  

ui = Kxi ∈ ℝ
m.                                                                         (7) 

In this system, the differentiation order α is taken as the same 

for all the state variables xi
j
, j = 1, 2, . . . , n, that is  

Δαxi =

(

 

Δαxi
1

Δαxi
2

⋮
Δαxi

n)
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This is referred to as commensurate order. We will propose a 
technique to determine among these controls as low which makes 
the system insensitive to the effect of the unknown part τ̂0. 

We replace Δαxi+1 by its value; system (6) could be rewritten 
as  

{
 

 xi+1 = ∑  
i

j=0
Ajxi−j,

x0 = τ0 + τ̂0 ∈ ℝ
n

                                                                (8) 

where  

A0 = A + BK + αIn                                                                  (9) 

and  

Aj = −(−1)
j+1 (

α
j + 1) In,    ∀j ≥ 1.                                   (10) 

Remark 1. The model described in (8) can be classified as a 
discrete-time system with a time-delay in the state. For practical 
use, the number of simple taken into consideration needs to be 

reduced to the predefined number L called the memory length 
and xi = 0 for i < 0 (Dzieliński and Sierociuk, 2008). 

Thus, system (8) becomes  

{
 

 xi+1 = ∑  
L

j=0
Ajxi−j,

x0 = τ0 + τ̂0 ∈ ℝ
n

                                                     (11) 

Definition 2. The system given by (6) could be rewritten as an 
infinite dimensional system taking the form 

 (

xi+1
xi
xi−1
⋮

) = Ã(

xi
xi−1
xi−2
⋮

) + B̃ui     ,        yi = C̃(

xi
xi−1
xi−2
⋮

) 

where Ã = ( 

A + αIn A1 A2 ⋯
     In 0 0 ⋯
     0 In 0 ⋯
     ⋮ ⋮ ⋮  ⋮

)    , B̃ = (

B
0
0
⋮

)  and 

C̃ = (C 0 0 ⋯). 
Theorem 1 (Dzieliński-Sierociuk, 2008) The system given by 

definition (2) is asymptotically stable if and only if ∥ �̃� ∥< 1, 
where ∥. ∥ denotes the matrix norm defined as 𝑚𝑎𝑥|𝜆𝑖|, where 

𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue of the matrix �̃�. 
The general solution of (11) (Buslowicz, 1983) is given as  

xi = Gix0                                                                     (12) 

where  

Gi = {

In                                          if    i = 0

∑  
L

j=0
AjGi−1−j    if    i ≥ 1

                      (13) 

with Gi = 0,    ∀i < 0.  

Remark 2 From (12) and (13) for α = 1 we have  

xi = (A + I + BK)
ix0                                                     (14) 

for which the corresponding solution of the linear discrete-time 
systems is 

{
xi+1 = (A + I)xi + Bui,    i ≥ 0
x0 ∈ ℝ

n                                       (15) 

Remark 3 In the case of noncommensurate order we have  

{

xk+1 = ∑  k
j=0 Ajxk−j

x0 = τ0 + τ̂0 ∈ ℝ
n

yk = Cxk,    k ≥ 0

                                      (16) 

where the matrices Aj are given as 

A0 = A + BK + diag ((
α1
1
) , . . . , (

αn
1
))                      (17) 

and for all j ≥ 1  

Aj = −(−1)
j+1diag {(

α1
j + 1) , . . . , (

αn
j + 1)

⏞            
n−times

}.       (18) 

If A ⊂ ℝn, then the convex hull of A is the smallest convex 

set containing A, that is, it consists of all finite convex combina-
tions of elements in A. The closed convex hull of A is the closure 

of the convex hull of A. Now, we present the theorem of Krein–
Milman (see Haim Brezis).  
Theorem 2 (Krein–Milman) Let 𝐾 ⊂ ℝ𝑛 be a compact convex 

set. Then 𝐾 coincides with the closed convex hull of its extreme 
points. In the following, we will assume that the unknown part 
�̂�0 ∈ 𝛺, where the set 𝛺 ⊂ ℝ𝑛 is a polytope convex of vertices 

𝑤1, 𝑤2, . . . , 𝑤𝑝. According to Krein–Milman theorem, the un-

known part �̂�0 could be written as follows:  

τ̂0 = ∑  
p
j=1 αjwj.                                                                     (19) 

for some unknown coefficients α1 ≥ 0, . . . , αp ≥ 0, such that 

∑  
p
j=1 αj = 1. 

Definition 3. (Larrache, 2020) An unknown part τ̂0 is said to be 

ϵ −tolerable if the corresponding output satisfies the following 
condition:  

∥
∂yi

∂αj
∥≤ ϵ,    ∀j ∈ σ1

p
,    ∀i ≥ 0.         (20) 

Otherwise, τ̂0 is said to be ϵ −intolerable.  

Definition 4. For a given ϵ > 0, and a gain matrix K ∈ ℝm×n, 
the set  

Υ(K, ϵ) = {x ∈ ℝn/    ∥ yi ∥=∥ CGix ∥≤ ϵ,    ∀i ≥ 0}       (21) 

is called the maximal output set.   

Our goal is to characterise the set χ(τ̂0, ϵ) of all gain matrices 
K, which makes the systems insensitive to the unknown part τ̂0, 
to be explicit as  

χ(τ̂0, ϵ) = {K ∈ ℝ
m×n / ∥

∂yi

∂αj
∥≤ ϵ,    ∀j ∈ σ1

p
,    ∀i ≥

0}.(22) 

On the other hand, we have  

∂ yi

∂ αj
=

∂ CGi(τ0+τ̂0)

∂ αj
= CGiwj,    ∀j ∈ σ1

p
,    ∀i ≥ 0.       (23) 

This leads to  

χ(τ̂0, ϵ) = {K ∈ ℝ
m×n / ∥ CGiwj ∥≤ ϵ, ∀j ∈ σ1

p
, ∀i ≥ 0}. 

(24) 

In Remark 4, we will show the interest of introducing the set 

Υ(K, ϵ) in the characterisation of χ(τ̂0, ϵ).   
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Remark 4 The set χ(τ̂0, ϵ) can be rewritten as  

χ(τ̂0, ϵ) = {K ∈ ℝ
m×n / wj ∈ Υ(K, ϵ),    ∀j ∈ σ1

p
}.       (25) 

Therefore, system (6) is insensitive to the unknown part τ̂0 if 

and only if wj ∈ Υ(K, ϵ),    ∀j ∈ σ1
p

. In order to characterise the 

set Υ(K, ϵ) and then our set χ(τ̂0, ϵ), we introduce the sets 

Υk(K, ϵ),    k ≥ 0 defined as  

Υk(K, ϵ) = {x ∈ ℝn/    ∥ yi ∥=∥ CGix ∥≤ ϵ,    ∀i ∈ σ0
k}.  (26) 

3. CHARACTERISATION OF THE MAXIMAL OUTPUT SET 

𝚼 (𝐊, 𝛜) 

The main purpose of this section is to characterise, under cer-

tain hypothesis, the maximal output set Υ(K, ϵ) and then the set 

χ(τ̂0, ϵ). We prove the finite determination of the set Υ(K, ϵ) and 
then the set χ(τ̂0, ϵ), and this leads to the algorithmic procedure 
for the computation of such set. 

Definition 5. (Gilbert, 1991; Rachik, 2002) The set Υ(K, ϵ) is said 
to be finitely determined, if there exists an integer k such that 

Υ(K, ϵ) = Υk(K, ϵ). Let k∗ be the smallest integer such that 

Υ(K, ϵ) = Υk
∗
(K, ϵ); we call k∗ the admissibility index.  

Remark 5  {Υk(K, ϵ)}k≥0 is a decreasing sequence, that is, 

∀k ≤ s we have  

Υ(K, ϵ) ⊂ Υs(K, ϵ) ⊂ Υk(K, ϵ). (27) 

Proposition 1. The set 𝛶(𝐾, 𝜖) of some gain matrix 𝐾 is  
    (i)   Convex,  
    (ii)   Symmetric,  
    (iii)  Contain the origin in its interior,  
    (iv)  Closed.  

Proof. (i), (ii) and (iii) from the definition of Υ(K, ϵ). 
(iv) We define for each k ∈ ℕ the function Tk as 

Tk: ℝn ⟶ ℝp

x ⟼ CGkx.
 (28) 

Then 

Υ(K, ϵ) = ⋂  k≥0 Tk
−1(B(0, ϵ)) (29) 

where B(0, ϵ) = {x ∈ ℝp/  ‖x‖ ≤ ϵ}. 
Since B(0, ϵ) is closed and (Tk)k≥0, k ∈ ℕ are continuous 

functions, then Tk
−1(B(0, ϵ)), k ∈ ℕ are closed. Therefore 

Υ(K, ϵ) is closed.     
We give a necessary condition ensuring the finite determina-

tion of the set Υ(K, ϵ) and then the set χ(τ̂0, ϵ).   
Proposition 2. If 𝛶(𝐾, 𝜖) is finitely determined, then there exists 

an integer 𝑘∗ such that 𝛶𝑘
∗
(𝐾, 𝜖) = 𝛶𝑘

∗+1(𝐾, 𝜖). 
Proof. Suppose Υ(K, ϵ) is finitely determined. Then  

∃k ∈ ℕ,                  Υ(K, ϵ) = Υk(K, ϵ). (30) 

On the other hand 

Υk(K, ϵ) = Υ(K, ϵ) ⊂ Υk+1(K, ϵ) ⊂ Υk(K, ϵ) (31) 

since {Υk(K, ϵ)}
k≥0

  is a decreasing sequence. 

This leads to 

Υk(K, ϵ) = Υk+1(K, ϵ),            for some  k ≥ 0 (32) 

which completes the proof. 

An efficient result is then introduced that permits us to deter-

mine the set Υ(K, ϵ) through a finite number of inequations and 

then the set χ(τ̂0, ϵ) leads also to the generation of an algorith-
mic approach to obtain admissibility index k∗. In our study, we 
consider two cases: 

First case: p = n (i.e. the observation space and the state space 
have the same dimension). 

Second case: p < n. 

First case, p = n. In this case C is an n × n matrix.   
Proposition 3. Suppose the following assumptions hold:  

(i)  ∑  
𝐿

𝑗=0
∥ 𝐴𝑗 ∥ ≤  1 and 𝛶𝑘(𝐾, 𝜖) = 𝛶𝑘+1(𝐾, 𝜖) for some 𝑘,  

(ii)  𝐶 commutes with 𝐴𝑗 for all 0 ≤ 𝑗 ≤ 𝐿.  

Then 𝛶(𝐾, 𝜖) is finitely determined. 

Proof. Clearly Υ(K, ϵ) ⊂ Υk(K, ϵ). Let x0 ∈ Υ
k(K, ϵ), then  

∥ CGix0 ∥≤ ϵ,    ∀i ≤ k + 1. 

But  

∥ CGk+2x0 ∥=∥ C(∑ 

L

j=0

AjGk+1−j)x0 ∥ 

=∥∑ 

L

j=0

(CAjGk+1−jx0) ∥ 

=∥∑ 

L

j=0

(AjCGk+1−jx0) ∥ 

≤∑ 

L

j=0

∥ Aj ∥∥ CGk+1−jx0 ∥ 

≤ ϵ∑ 

L

j=0

∥ Aj ∥ 

since ∥ CGk+1−jx0 ∥≤ ϵ,    ∀j ∈ σ0
L.  

Now, using the assumption ∑  
L

j=0
∥ Aj ∥ ≤ 1; it follows that  

∥ CGk+2x0 ∥≤ ϵ. 

By iteration, we show that  

∥ CGk+jx0 ∥≤ ϵ,        ∀j ≥ 2 

That is, 

∥ CGix0 ∥≤ ϵ,        ∀i ≥ k + 2. 

Consequently,  

∥ CGix0 ∥≤ ϵ,        ∀i ≥ 0 

This leads to  

x0 ∈ Υ(K, ϵ) 

and complete the proof.    

Second case: dim B(0, ϵ) = p < n.  

Since the matrix C ∈ ℒ(ℝn, ℝp), we define Ĉ and B̂(0, ϵ) as  

Ĉ = (
C
0
) ∈ ℒ(ℝn, ℝn) 
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B̂(0, ϵ) = B(0, ϵ) × {0ℝn−p} ⊂ ℝ
n. 

Now considering the new observation ŷi = Ĉxi, we easily 
verify that, for every integer i  

yi ∈ B(0, ϵ) ⟺ ŷi ∈ B̂(0, ϵ). 

Remark 6 The set Υ(K, ϵ) associated to C and B(0, ϵ) is equal 

to the set Υ(K, ϵ) associated to Ĉ and B̂(0, ϵ).   
Since dimB̂(0, ϵ) = n, then the result of the first case can be 
applied to deduce the following proposition.   
Proposition 4. Suppose the following assumptions hold:  

(i)  ∑  
𝐿

𝑗=0
∥ 𝐴𝑗 ∥≤ 1 and 𝛶𝑘(𝐾, 𝜖) = 𝛶𝑘+1(𝐾, 𝜖) for some 𝑘  

(ii)  �̂� commutes with 𝐴𝑗 for all 0 ≤ 𝑗 ≤ 𝐿.  

Then 𝛶(𝐾, 𝜖) is finitely determined.   
Proposition 5. If ∥ 𝐺𝑘 ∥≤ 𝜂𝑘,    ∀𝑘 ≥ 0 with 𝜂𝑘 ⟶ 0 as 

𝑘 ⟶ ∞ then 𝛶(𝐾, 𝜖) is finitely determined. 

Proof. Let k ∈ ℕ and x ∈ ℝn. Then  

∥ CGkx ∥≤∥ C ∥∥ Gk ∥∥ x ∥ 

≤ ηk ∥ C ∥∥ x ∥ 

And since ηk converges to zero when k ⟶ ∞ we deduce that  

∥ CGkx ∥≤ ϵ,    ∀k ≥ k0    for certain    k0 ≥ 0. (33) 

Let x0 ∈ Υ
k0(K, ϵ). Then  

∥ CGix0 ∥≤ ϵ,    ∀i ∈ σ0
k0  

using this time Eq. (33) we obtain  

∥ CGk0+1x0 ∥≤ ϵ    since    k0 + 1 ≥ k0. 

Hence  

x0 ∈ Υ
k0+1(K, ϵ) 

which completes the proof.    

4. ALGORITHMIC DETERMINATION 

As a direct consequence of Propositions 3 and 4, we propose 
in this section a procedure to determine k∗, index of admissibility, 

and consequently the sets Υ(K, ϵ) and χ(τ̂0, ϵ).  
Let ℝp be endowed with the following norm: 

‖x‖∞ = max
1≤i≤p

|(x)i|,            ∀x ∈ ℝ
p. 

We remark that  

Υk(K, ϵ) = Υk+1(K) ⟺ Υk(K, ϵ) ⊂ Υk+1(K, ϵ) 

since Υk+1(K, ϵ) ⊂ Υk(K, ϵ).  
Thus  

Υk(K, ϵ) = Υk+1(K, ϵ)      

⇔ ∀x ∈ Υk(K, ϵ),      ‖CGk+1x‖∞ ≤ ϵ   

⇔ ∀x ∈ Υk(K, ϵ),        |(CGk+1x)j| − ϵ ≤ 0, ∀j ∈ σ1
p

 

⇔ sup
|(CGix)l|−ϵ≤0,∀l∈σ1

p
,∀i∈σ1

k
|(CGk+1x)j| − ϵ ≤ 0,   ∀j ∈ σ1

p
.  

This leads to the following algorithm.   
Algorithm:  Determination of k∗ 
Require n, p, L ∈ ℕ∗, C, Gi, ϵ > 0 

k ← 0  

for j=1, ...,p do 

Maximise   Jj(x) = |(CGk+1x)j| − ϵ  

Subjet to the constraints   {
|(CGix)l| − ϵ ≤ 0

∀l ∈ σ1
p
,    ∀i ∈ σ0

k.
   

end for 

Jj
∗ ← max{Jj(x)}   

if   Jj
∗ ≤ 0, ∀j = 1, 2, … , p then  

    k∗ ← k    
else 

  k ← k + 1 and return to for     
end else 
Remark 7 The  hypothesis of Proposition 5 in section (3) is suffi-
cient but not necessary. If this condition is not provided, the stop-
ping of the algorithm is not certain. The maximal output set 

Υ(K, ϵ) is finitely determined and then the set χ(τ̂0, ϵ) if the 
algorithm converges, otherwise it is not.  

5. NUMERICAL EXAMPLES 

To demonstrate our achieved results, we present in the follow-
ing section some examples in the two-dimensional case. We will 

determine the set Υϵ(K) and then the set χ(τ̂0, ϵ) as a finite 
number of inequations using our algorithm. Assuming  

∑  L
j=0 ∥ Aj ∥< 1                                                                       (34) 

is checked in all the introduced examples, we will select the gain 

matrix K such that this condition (34) is verified. 
Using the property that (Hilfer, 2000)  

∑ 

L

j=0

(−1)j (
α
j ) =

Γ(L + 1 − α)

Γ(1 − α)Γ(L + 1)
 

and the fact that  

∑  L
j=0 ∥ Aj ∥= ∥ A + BK + αIn ∥ −∑  L

j=2 (−1)
j (
α
j ) +

| (
α
L + 1

) | 

we deduce that the condition ∑  L
j=0 ∥ Aj ∥< 1 can be rewritten as 

follows:  

∥ A + BK + αIn ∥ −∑ 

L

j=2

(−1)j (
α
j ) + | (

α
L + 1

) | < 1 

For example, for L = 50 and α = 0.4, we have  

∑  L
j=0 ∥ Aj ∥=∥ A + BK + αIn ∥ +0.4610. 

Then the matrix K must select such that  

∥ A + BK + αIn ∥< 0.5390. 

The dotted region will indicate the set Υϵ(K, ϵ). 
Example 1. Let us consider the following system:  

{
 
 

 
 
xi+1 =∑ 

i

j=0

Ajxi−j

x0 = τ0 + τ̂0 ∈ ℝ
2
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where τ0 and τ̂0 are the known and unknown parts of the initial 
state, respectively.  

Let  A, B, C, α, ϵ and L be defined as  

A = (
−1. 25

11

24
5

12
−
8

7

) , B = (
2 −

1

3

−
1

2
1

) 

C = (1 2), α = 0.7, ϵ = 0.7, L = 20. 

We have  

Aj = −(−1)
j+1 (

0.7
j + 1

) I2,    ∀j ∈ {1, 2, … , L}. 

We select the gain matrix K such that ∥ A0 ∥< 0.7395 

(since∑  
20

j=1
∥ Aj ∥= 0.2605). For K = (

0.5 0
0 1

), we have  

Ã = A + BK = (
−
1

4

1

8
1

6
−
1

7

) 

A0 = Ã + αI2 = (

9

20

1

8
1

6

39

70

) 

and  

∑ 

20

j=0

∥ Aj ∥=∥ A0 ∥ +∑  

20

j=1

∥ Aj ∥= 0.9426 < 1 

where ∥ A0 ∥= max
1≤j≤2

∑  
2

i=1
|(A0)ij|.  

In this example, we take τ0 that belongs to a hexagon (a pol-
ygon with six sides), see Fig. 1. 

 
Fig. 1. The set Ω with vertices w1, w2, . . . , w6. 

CG0 (
x
y) , . . . , CG5 (

x
y) are given by: 

CG0 (
x
y) = x + 2y 

CG1 (
x
y) =

47

60
x +

347

280
y 

CG2 (
x
y) =

2789

4200
x +

117 409

117 600
y 

CG3 (
x
y) =

2091 989

3528 000
x +

7082 557

8232 000
y 

CG4 (
x
y) =

267 585 763

493 920 000
x +

5303 791 039

6914 880 000
y 

CG5 (
x
y) =

260 274 628 301

518 616 000 000
x +

3377 530 607 827

4840 416 000 000
y. 

Using our algorithm we obtain k∗ = 4 and then  

Υ(K, ϵ) =

=

{
 
 
 
 
 
 

 
 
 
 
 
 

(
x
y) ∈ ℝ

2\

|x + 2y| ≤ 2

|
47

60
x +

347

280
y| ≤ 2

|
2789

4200
x +

117 409

117 600
y| ≤ 2,

|
2091 989

3528 000
x +

7082 557

8232 000
y| ≤ 2

|
267 585 763

493 920 000
x +

5303 791 039

6914 880 000
y| ≤ 2}

 
 
 
 
 
 

 
 
 
 
 
 

. 

We can see that w1 = (
0.7
0
) ,w2 = (

0.6
0.7
) , w3 =

(
−0.6
0.7

) , w4 = (
−0.7
0

) ,w5 = (
−0.6
−0.7

) , w6 = (
0.6
−0.7

) ∈

Υ(K, ϵ). Hence, the system is insensitive to the unknown part τ̂0. 

Consequently, the gain matrix K ∈ χ(τ̂0, ϵ).  

 

Fig. 2. The set Υ(K, ϵ) corresponding to K = (
0.5 0
0 1

) and α = 0.7 
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Example 2. Consider the following system:  

{
 
 

 
 
xi+1 =∑ 

i

j=0

Ajxi−j

x0 = τ0 + τ̂0 ∈ ℝ
2

 

where τ0   and τ̂0 are the known and unknown parts of the initial 

state, respectively, and A, B, K, C, α, ϵ are described as follows:  

C = (2 −1),    A = (
    
8

7
   
2

3

−
17

30
−
2

9

) 

B = (
−0.5

    
1

3

) , α = 0.2, ϵ = 0.8. 

 
Fig. 3. The set Ω with vertice w1 = (0; 0), w2 = (0.3; 0),
             w3 = (0; 0.3). 

In this example, the memory length L is equal to 30 and we 

assume τ0 to belong to a triangle (see Fig. 3). The matrices Aj 

are given as  

A0 = Ã + αI2 = A + BK + αI2 

and  

Aj = −(−1)
j+1 (

α
j + 1) I3,          j = 1, . . . , L. 

We select the gain matrix K such that ∥ A0 ∥< 0.6311 

(since∑  
30

j=1
∥ Aj ∥= 0.3689). For K = (2 1) we have  

A0 = (

12

35

1

6
1

10

14

45

) 

and  

∑ 

30

j=0

∥ Aj ∥=∥ A0 ∥ +∑  

30

j=1

∥ Aj ∥= 0.8467 < 1 

where ∥ A0 ∥= max1≤j≤2∑  2
i=1 |(A0)ij|.  

On the other hand, we have  

CG0 (
x
y) = (2 −1) (

x
y) = 2x − y  

CG1 (
x
y) = (2 −1)(

12

35

1

6
1

10

14

45

)(
x
y) =

41

70
x +

1

45
y  

CG2 (
x
y) = (2 −1)(

3149

14 700

103

945
103

1575

1567

8100

)(
x
y) =

1601

4410
x +

1391

56 700
y  

CG3 (
x
y) = (2 −1)(

369 917

2315 250

197 527

2381 400
197 527

3969 000

91 838

637 875

)(
x
y) =

7495 319

27 783 000
x +

391 441

17 860 500
y.  

We have used the relation Gk = ∑  
L

j=0
AjGk−1−j, k ≥ 1 to find the 

matrices Gk. Using our algorithm we obtain k∗ = 1 and then the 
set Υ(K, ϵ)  

Υ(K, ϵ) = {(
x
y) ∈ ℝ

2 \ 

|2x − y| ≤ 0.8

|
41

70
x +

1

45
y| ≤ 0.8

}.  

Since w1 = (
0
0
) ,w2 = (

0.3
0
) , w1 = (

0
0.3
) ∈ Υ(K, ϵ), we 

deduce that the unknown part τ̂0 does not influence the associat-

ed output function. In this case, the chosen matrix K belongs to 

χ(τ̂0, ϵ), so it is useful.  

 
Fig. 4. The set Υ(K, ϵ) is associated to K = (2   1) and α = 0.2. 

Example 3. For  

𝐴 = (

37

12
−
15

8
1

10
−
15

8

) ,    𝐵 = (
3 1
0 1

)  

𝐾 = (
−1 0
0 2

) ,     𝐶 = (1 −1) 

𝜀 = 0.1,    𝛼 = 0.1,    𝐿 = 8 

we obtain  

CG0 (
x
y) = x − y  
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CG1 (
x
y) = (1 −1)(

11

60

1

8

1

10

9

40

)(
x
y) =

1

12
x −

1

10
y  

CG2 (
x
y) = (1 −1)(

41

450

49

960

49

1200

173

1600

)(
x
y) =

181

3600
x −

137

2400
y  

CG3 (
x
y) = C(

25 297

432 000

3283

115 200

3283

144 000

13 067

192 000

)(
x
y) =

1931

54 000
x −

11 393

288 000
y  

CG4 (
x
y) = C(

56 471 173

1296 000 000

270 829

13 824 000

270 829

17 280 000

28 859 813

576 000 000

)(
x
y) =

18 079 499

648 000 000
x −

26 362 907

864 000 000
y  

 
Fig. 5. The set Ω with vertices 

            w1 = (0.5; 0.5),w2 = (0; 0.5), w3 = (1; 1). 

In this example, we assume τ0 belongs to a triangle (see Fig. 

4). Using our algorithm, we obtain k∗ = 3, and then the set  

Υ(𝐾, 𝜖) =

{
 
 
 
 

 
 
 
 

(
x
y) ∈ ℝ

2/

|x − y| ≤ 0.1

|
1

12
x −

1

10
y| ≤ 0.1

|
181

3600
x −

137

2400
y  | ≤ 0.1

|
1931

54 000
x −

11 393

288 000
y  | ≤ 0.1}

 
 
 
 

 
 
 
 

  

Since w1 = (
0.5
0.5
) , w2 = (

1
1
) ∈ Υ(K, ϵ) and w3 =

(
0
0.5
) ∉ Υ(K, ϵ), we conclude that the system is influenced by 

the unknown part τ̂0. Thus K = (
−1 0
0 2

) ∉ χ(τ̂0, ϵ).  

 

Fig. 6. The set Υ(K, ϵ) corresponding to K = (
−1 0
0 2

) and α = 0.1. 

In examples 1–3, we have identified the set of all possible 
gain matrices which make the system insensitive to the unknown 
part τ̂0 of the initial state x0 via a finite number of inequations 
using Algorithm 1 based on the simplex method, which allow 
solving problems of maximisation that arise in such algorithm. In 
Figs. 1–3, we have traced the constraints constituting the sets 

Υ(K, ϵ). 

6. CONCLUSION 

In this paper, we have studied the problem of fractional order 
discrete-time controlled linear systems with unknown part of the 
initial state using the Grünwald–Letnikov fractional derivative. We 

have investigated the characterisation of the set χ(τ̂0, ϵ) of all 
possible gain matrices so that the sensitivity of the resulting sys-
tem output would be relatively tolerable based on the study of 
maximal output set. Some new sufficient conditions to ensure the 

finite determination of χ(τ̂0, ϵ) are given. Furthermore, a useful 
algorithm is produced to identify the index of admissibility k∗ and 

then the set χ(τ̂0, ϵ). The theoretical results are shown by various 
examples and numerical simulation. As a natural continuation of 
this work, we are studying the following problem.  
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