PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lévy processes and self-decomposability in finance

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main theme of Urbanik’s work was infinite divisibility and its ramifications. The aim of this memorial article is to trace the application of this theme in mathematical finance, one of the main growth areas in contemporary probability theory. We begin in Section 1 with a discussion of the nature of prices. In particular, we focus on whether (or when) prices may be taken as continuous, with a view to using Lévy processes to model the case of prices with jumps. We turn in Section 2 to asset return distributions; prime candidates for modelling here include the normal, hyperbolic and Student t cases. In Section 3, we turn to distributions of type G, in particular, those in which the mixing law is not only infinitely divisible but also self-decomposable (i.e. in the class SD), which includes all three cases above. Then in Section 4 we turn to the dynamic counterpart of this, in which the law of class SD occurs as the limit law of a stochastic process of Ornstein-Uhlenbeck type, with Lévy driving noise. Finally, in Section 5 we discuss stochastic volatility models.
Rocznik
Strony
367--378
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • Department of Probability and Statistics, University of Sheffield, Sheffield S3, 7RH, UK
Bibliografia
  • [1] T. Aoyama and M. Maejima, Characterizations of subclasses of type G distributions in Rd by stochastic integral representations, Bernoulli, to appear.
  • [2] L. Bachelier, Théorie de la spéculation, Ann. Sci. École Norm. Sup. 17 (1990), pp. 21-86. Reprinted in: Louis Bachelier’s Theory of speculation. The origins of modern finance. Translated and with commentary by M. Davis and A. Etheridge (foreword by P. A. Samuelson), Princeton University Press, Princeton, NJ, 2006.
  • [3] A. A. Balkema and P. Embrechts, High-risk Scenarios and Extremes: A Geometric Approach, to appear.
  • [4] O. E. Barndorff-Nielsen, Superpositions of Ornstein-Uhlenbeck type processes, Theory Probab. Appl. 45 (2001), pp. 175-194.
  • [5] O. E. Barndorff-Nielsen, M. Maejima and K. Sato, Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations, Bernoulli 12 (2006), pp. 1-34.
  • [6] O. E. Barndorff-Nielsen and V. Pérez-Abreu, Stationary and self-similar processes driven by Lévy processes, Stochastic Process. Appl. 84 (1999), pp. 357-369.
  • [7] O. E. Barndorff-Nielsen and V. Pérez-Abreu, Extensions of type G and marginal infinite divisibility, Theory Probab. Appl. 47 (2002), pp. 202-218.
  • [8] O. E. Barndorff-Nielsen and N. Shephard, Orstein-Uhlenbeck based models and some of their uses in financial econometrics (with discussion), J. Roy. Statist. Soc. Ser. B 63 (2001), pp. 197-241.
  • [9] O. E. Barndorff-Nielsen and N. Shephard, Econometric analysis of realised volatility and its use in estimating stochastic volatility models, J. Roy. Statist. Soc. Ser. B 64 (2002), pp. 253-280.
  • [10] E. Barrucci, P. Malliavin, M. E. Mancino, R. Renó and A. Thalmaier, The price-volatility feedback rate: an implementable mathematical indicator of market stability, Math. Finance 13 (2003), pp. 17-35.
  • [11] N. H. Bingham and R. Kiesel, Risk-neutral Valuation: Pricing and Hedging of Financial Derivatives, 2nd edition, Springer 2004 (1st edition 1998).
  • [12] N. H. Bingham and R. Kiesel, Modelling asset returns with hyperbolic distributions, pp. 1-20 in [32].
  • [13] N. H. Bingham and R. Kiesel, Semi-parametric modelling in finance: Theoretical foundations, Quant. Finance 2 (2002), pp. 241-250.
  • [14] N. H. Bingham, R. Kiesel and R. Schmidt, Semi-parametric modelling in finance: Econometric applications, Quant. Finance 3 (2003), pp. 426-441.
  • [15] N. H. Bingham, R. Kiesel and R. Schmidt, Multivariate elliptic processes, preprint, Faculty of Mathematics and Economics, University of Ulm.
  • [16] N. H. Bingham and R. Schmidt, Interplay between distributional and temporal dependence. An empirical study with high-freguency asset returns, pp. 69-90 in [30].
  • [17] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy 72 (1973), pp. 637-659.
  • [18] P. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd edition, Springer, 1991 (1st edition 1987).
  • [19] M.-F. Bru, Wishart processes, J. Theoret. Probab. 4 (1991), pp. 725-751.
  • [20] P. Carr, H. Geman, D. B. Madan and M. Yor, Stochastic volatility for Lévy processes, Math. Finance 13 (2003), pp. 345-382.
  • [21] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall, 2004.
  • [22] Nizar Demni, Laguerre process and generalized Hartman-Watson law, preprint, Lab. des Probabilités, Univ. Paris-VI, 2005.
  • [23] C. Donati-Martin, Y. Doumerc, H. Matsumoto and M. Yor, Some properties of the Wishart processes and matrix extensions of the Hartman-Watson laws, Publ. Res. Inst. Math. Sci 40 (2004), pp. 1385-1412.
  • [24] K.-T. Fang, S. Kotz and K.-W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, 1990.
  • [25] H. Geman, D. B. Madan and M. Yor, Stochastic volatility, jumps and hidden time-changes, Finance Stoch. 6 (2002), pp. 63-90.
  • [26] E. Grosswald, The Student t-distribution of any degrees of freedom is infinitely divisible, Z. Wahrschein. Verw. Gebiete 36 (1976), pp. 103-109.
  • [27] C. Halgreen, Self-decomposability of the generalized inverse Gaussian and hyperbolic distribution functions, Z. Wahrschein. Verw. Gebiete 47 (1979), pp. 13-18.
  • [28] C. C. Heyde and N. N. Leonenko, Student processes, J. Appl. Probab. 37 (2005), pp. 342-365.
  • [29] J. Jurek, Remarks on the self-decomposability and new examples, Demonstratio Math. 34 (2001), pp. 241-250.
  • [30] Yu. Kabanov, R. Liptser and J. Stoyanov (Eds.), From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrft, Springer, 2006.
  • [31] C. Klüppelberg, A. Lindner and R. A. Maller, Continuous-time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, pp. 393-419 in [30].
  • [32] J. Knight and S. Satchell (Eds.), Return Distributions in Finance, Butterworth-Heinemann, 2001.
  • [33] S. Kotz and S. Nadarajah, Multivariate t-distributions and their Applications, Cambridge University Press, 2004.
  • [34] A. Kyprianou, W. Schoutens and P. Willmott, Exotic Option Pricing and Advanced Lévy Models, Wiley, 2005.
  • [35] M. Loève, Paul Lévy (1886-1971), obituary, Ann. Probab. 1 (1973), pp. 1-18.
  • [36] P. Malliavin and M. E. Mancino, Fourier series method for measurement of multivariate volatilities, Finance Stoch. 6 (2002), pp. 49-61.
  • [37] P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer, 2006.
  • [38] B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration and Risk. Selecta Volume E, Springer, 1997.
  • [39] M. B. Marcus, ξ-radial Processes and Random Fourier Series, Mem. Amer. Math. Soc. 368 (1987).
  • [40] H. Markowitz, Portfolio selection, J. Finance 7 (1952), pp. 77-91.
  • [41] A. McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques, Tools, Princeton University Press, 2005.
  • [42] R. F. Merton, Theory of rational option pricing, Bell J. Economics and Management Science 4 (1973), pp. 141-183 (reprinted as Chapter 8 in R. C. Merton, Continuous-time Finance, Blackwell, 1990).
  • [43] E. Nicolato and E. Venardos, Option pricing in stochastic volatility models of Ornstein-Uhlenbeck type, Math. Finance 13 (2003), pp. 445-466.
  • [44] A. Philipov and M. E. Glickman, Multivariate stochastic volatility via Wishart processes, preprint, Dept. Finance, American University, Vienna, VA, 2005.
  • [45] P. Samuelson, Rational theory of warrant pricing, Industrial Management Review 6 (1965), pp. 13-39.
  • [46] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
  • [47] W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, 2003.
  • [48] G. Shafer and V. Vovk, The sources of Kolmogorov's Grundbegriffe, Statist. Sci. 21 (2006), pp. 70-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12baad4e-2134-49c5-af47-779886c876e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.