PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Fibre Orientation and Void Content in Bagasse Fibre Composites Using an Image Analysis Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie techniki analizy obrazu do badania orientacji włókien i zawartości pustych przestrzeni w kompozytach wzmocnionych włóknami bagasse
Języki publikacji
EN
Abstrakty
EN
In this research work, a nondestructive technique of image analysis was explored to determine the fibre orientation and void content in Bagasse fibre reinforced composites. Fibre length, alkali treatment and fibre loading were studied as variables. The fibre orientation was irrespective of the fibre length, fibre loading and alkali treatment variables. The void content and size decreased with increases in fibre length and alkali treatment. The alkali treatment resulted in the removal of lignin, making the surface of the fibres rough. It also led to making the fibre count fine i.e. reducing the diameter of the fibres and thus presenting more fibres for interaction with resin. Both these phenomena resulted in a slower flow of resin. The void content of bagasse fibre composites decreased with higher fibre loading because a higher number of fibres slows the resin flow. However, the size i.e. area of the voids increased with the fibre loading from 20 to 30%, probably due to increased wetting difficulty.
PL
W pracy badawczej zbadano nieniszczącą technikę analizy obrazu w celu określenia orientacji włókien i zawartości pustych przestrzeni w kompozytach wzmocnionych włóknem bagasse. Jako zmienne zbadano długość włókien, obróbkę alkaliami i obciążenie włókien. Orientacja włókien była niezależna od długości włókna, obciążenia włókna i parametrów obróbki alkalicznej. Ilość i rozmiar pustych przestrzeni zmniejszały się wraz ze wzrostem długości włókna i obróbką alkaliczną. Obróbka alkaliczna spowodowała usunięcie ligniny, powodując szorstkość powierzchni włókien. Doprowadziło to również do dokładnego zliczenia włókien, tj. zmniejszenia średnicy włókien, a co za tym idzie większej liczby włókien w interakcji z żywicą. Oba te zjawiska spowodowały wolniejszy przepływ żywicy. Ilość pustych przestrzeni w kompozytach włókien bagasse zmniejszyła się wraz ze wzrostem obciążenia włókien, ponieważ większa liczba włókien spowalnia przepływ żywicy. Jednak rozmiar, tj. obszar pustych przestrzeni, wzrastał wraz z obciążeniem włókien od 20% do 30%, prawdopodobnie z powodu zwiększonej trudności zwilżania.
Rocznik
Strony
26--32
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • NED University of Engineering & Technology, Department of Textile Engineering, Karachi – 75270, Pakistan
autor
  • NED University of Engineering & Technology, Department of Textile Engineering, Karachi – 75270, Pakistan
  • NED University of Engineering & Technology, Department of Textile Engineering, Karachi – 75270, Pakistan
autor
  • NED University of Engineering & Technology, Department of Textile Engineering, Karachi – 75270, Pakistan
autor
  • University of Manchester, School of Materials, Manchester, UK
Bibliografia
  • 1. Jawaid M, Abdul Khalil HPS. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydrate Polymers. 2011; 86(1): 1-18.
  • 2. Pujari S, Ramakrishna A, Kumar MS, Comparison of Jute and Banana Fiber Composites: A Review. International Journal of Current Engineering and Technology. 2014; 2:121-126.
  • 3. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A Review on Natural Fiber Reinforced Polymer Composite and its Applications. International Journal of Polymer Science 2015; 243947.
  • 4. Syed Mazhar Abbas Rizvi, Abhishek Dwivedi, Syed Shane Raza, Anshika Awasthi, Gupta H. An Investigation of Thermal Properties of Reinforced Coconut Coir-Bagasse Fibres Polymer Hybrid Composites. International Journal of Scientific Research in Science, Engineering and Technology. 2017; 3(1).
  • 5. Jústiz-Smith NG, Virgo GJ, Buchanan VE. Potential of Jamaican Banana, Coconut Coir and Bagasse Fibres as Composite Materials. Materials Characterization 2008; 59(9):1273-8.
  • 6. Xiong W. Bagasse Composites: A Review of Material Preparation, Attributes, and Affecting Factors. Journal of Thermoplastic Composite Materials 2018; 31(8): 1112-46.
  • 7. Shekar KC, Singaravel B, Prasad SD, Venkateshwarlu N. Effect of Fiber Orientation on the Flexural Properties of Glass Fiber Reinforced, Epoxy-Matrix Composite. Materials Science Forum 2019; 969: 502-7.
  • 8. Hari Kishore R, Thambi Babu M, Pandu Ranga Rao M, Sasidhar G. Study of Mechanical Properties of Glass–Jute-Fiber-Reinforced Hybrid Composites by Varying Its Fiber Orientation and Resins. Proceedings of ICLIET Recent Advances in Material Sciences; 2018: Springer.
  • 9. Turaka S, Reddy K. Effect of Fiber Orientation on the Mechanical Behavior of E-Glass Fibre Reinforced Epoxy Composite Materials. International Journal of Mechanical and Production Engineering Research and Development 2018; 8: 379-96.
  • 10. Yousfani SHS, Gong RH, Porat I. Manufacturing of Fibreglass Nonwoven Webs Using a Paper Making Method and Study of Fibre Orientation in These Webs. FIBRES & TEXTILES in Eastern Europe 2012; 20, 2(91): 61-67.
  • 11. Kim HS. Relationship between Fiber Orientation Distribution Function and Mechanical Anisotropy of Thermally Point-Bonded Nonwovens. Fibers and Polymers 2004; 5(3): 177.
  • 12. Geeta Durga, Kalra P. Fiberglass Nonwoven Webs Development Using a Paper Production Process and Fiber Orientation Analysis in These Webs. Journal of Critical Reviews 2020; 7(7): 1194 – 201.
  • 13. Mlekusch B. Fibre Orientation in Short-Fibre-Reinforced Thermoplastics II. Quantitative Measurements by Image Analysis. Composites Science and Technology 1999; 59(4): 547-60.
  • 14. Eberhardt C, Clarke A, Vincent M, Giroud T, Flouret S. Fibre-Orientation Measurements in Short-Glass-Fibre Composites – II: A Quantitative Error Estimate of the 2D Image Analysis Technique. Composites Science and Technology 2001; 61(13): 1961-74.
  • 15. Sadik Z, Abllouh H, Benmoussa K, Idrissi-Saba H, Kaddami H. Use of 2D Image Analysis Method for Measurement of Short Fibers Orientation. Polymer Composites Engineering Solid Mechanics 2020; 8(3): 233-44.
  • 16. Modhaffar I, Gueraoui K, Men-la-yakhaf S, Tourroug HE. Simulation of Short Fiber Orientation in Thermoplastic Matrix. Journal of Materials and Environmental Science 2017; 8(1): 44 – 9.
  • 17. Wang B, Fang G, Liu S, Liang J. Effect of Heterogeneous Interphase on the Mechanical Properties of Unidirectional Fiber Composites Studied by FFT-Based Method. Composite Structures 2019; 220: 642-51.
  • 18. Kratmann KK, Sutcliffe MPF, Lilleheden LT, Pyrz R, Thomsen OT. A Novel Image Analysis Procedure for Measuring Fibre Misalignment in Unidirectional Fibre Composites. Composites Science and Technology 2009; 69(2): 228-38.
  • 19. LeBel F, Ruiz É, Trochu F. Void Content Analysis and Processing Issues to Minimize Defects in Liquid Composite Molding. Polymer Composites 2019; 40(1): 109-20.
  • 20. Ismail AS, Jawaid M, Naveen J. Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites. Materials 2019; 12(13): 2094.
  • 21. Hamidi Y, Altan M. Process Induced Defects in Liquid Molding Processes of Composites. International Polymer Processing 2017; 32.
  • 22. Guo Z-S, Liu L, Zhang B-M, Du S. Critical Void Content for Thermoset Composite Laminates. Journal of Composite Materials 2009; 43(17): 1775-90.
  • 23. Costa ML, Rezende MC, de Almeida SFM. Effect of Void Content on the Moisture Absorption in Polymeric Composites. Polymer-Plastics Technology and Engineering 2006; 45(6): 691-8.
  • 24. Ramlee NA, Jawaid M, Zainudin ES, Yamani SAK. Tensile, Physical and Morphological Properties of Oil Palm Empty Fruit Bunch/Sugarcane Bagasse Fibre Reinforced Phenolic Hybrid Composites. Journal of Materials Research and Technology 2019; 8(4): 3466-74.
  • 25. Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SV. Voids in Fiber-Reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance. Journal of Composite Materials 2019; 53(12): 1579-669.
  • 26. Yousfani SHS, Gong Rh, Porat I. Manufacture of Fibreglass Nonwoven Composites and Study of the Effect of Different Variables on Their Quality. Polymers and Polymer Composites 2015; 23(5): 351-358.
  • 27. Rajak DK, Pagar DD, Menezes PL, Linul E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties and Applications. Polymers 2019; 11(10): 1667.
  • 28. Amirkhosravi M, Pishvar M, Hamidi YK, Altan MC. Accurate Characterization of Fiber and Void Volume Fractions of Natural Fiber Composites by Pyrolysis in a Nitrogen Atmosphere. AIP Conference Proceedings 2020; 2205(1): 020032.
  • 29. Abd El-Baky MA, Megahed M, El-Saqqa HH, Alshorbagy AE. Mechanical Properties Evaluation of Sugarcane Bagasse-Glass/ Polyester Composites. Journal of Natural Fibers 2019: 1-18.
  • 30. Ghanbar S, Yousefzade O, Hemmati F, Garmabi H. Microstructure and Thermal Stability of Polypropylene/Bagasse Composite Foams: Design of Optimum Void Fraction Using Response Surface Methodology. Journal of Thermoplastic Composite Materials 2016; 29(6): 799-816.
  • 31. Wang PH, Sterkenburg R, Kim G, He YW. Investigating the Void Content, Fiber Content, and Fiber Orientation of 3D Printed Recycled Carbon Fiber. Key Engineering Materials 2019; 801: 276-81.
  • 32. Monticeli FM, Ornaghi HL, Cornelis Voorwald HJ, Cioffi MOH. Three-Dimensional Porosity Characterization in Carbon/Glass Fiber Epoxy Hybrid Composites. Composites Part A: Applied Science and Manufacturing 2019; 125: 105555.
  • 33. Santos ACMQS, Monticeli FM, Ornaghi H, Santos LFdP, Cioffi MOH. Porosity Characterization and Respective Influence on Short-Beam Strength of Advanced Composite Processed by Resin Transfer Molding and Compression Molding. Polymers and Polymer Composites DOI: 10.1177/0967391120968452.
  • 34. Li Y, Li Q, Ma H. The voids formation mechanisms and their effects on the mechanical properties of flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. 2015;72:40-8.
  • 35. Suckley S, Deenuch P, Disjareon N, Phongtamrug S. Effects of Alkali Treatment and Fiber Content on the Properties of Bagasse Fiber-Reinforced Epoxy Composites. Key Engineering Materials. 2017;757:40-5.
  • 36. Cao Y, Shibata S, Fukumoto I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A: Applied Science and Manufacturing. 2006;37(3):423-9.
  • 37. Oladele IO. Effect of Bagasse Fibre Reinforcement on the Mechanical Properties of Polyester Composites. The Journal of the Association of Professional Engineers of Trinidad and Tobago 2013;42(1):12-5.
  • 38. Biraj Dhibar, Siddharth Vikram Singh, Shoeb Anwar, Abhineet Singh, Mahesh S, Gowda V. Sugarcane Bagasse Reinforced Polyester Composites. International Research Journal of Engineering and Technology. 2018;5(5):4204-11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12b68bfa-071b-43f0-a328-b4c0b0c7dd67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.