PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Slump folds within mid-Miocene crevasse-splay deposits : a unique example from the Tomisławice lignite opencast mine in central Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-tectonic, soft-sediment deformation structures occur in mid-Miocene crevasse-splay deposits exposed in the Tomisławice lignite opencast mine in central Poland. The crevasse-splay cross-stratified siliciclastic deposits are underlain by continuously folded and relatively thick lignite beds, and overlain by a thin undisturbed layer of lignite. Only the middle part of the crevasse-splay succession is deformed plastically in the form of folds, while the lower and uppermost beds are undeformed. Most of the intraformational deformation structures are recumbent folds, while only a few can be classified as upright folds in the initial stage of their evolution. The origin of these folds is associated here with a penecontemporaneous slumping process caused by liquefaction of sandy-muddy sediments. The slumping was triggered by an increase in the inclination of heterolithic layers caused by the compactional subsidence of an organic-rich substrate - peat. This type of subsidence occurred following a sudden siliciclastic load on top of the underlying and poorly-compacted peat/lignite seam. The initiation and development of the slump folds can be explained by differentiated loading, compaction and liquefaction processes, and the introduction of a tectonic agent is unnecessary.
Rocznik
Strony
711--722
Opis fizyczny
Bibliogr. 80 poz., fot., rys., tab.
Twórcy
autor
  • Institute of Geology, Adam Mickiewicz University, Krygowskiego 12, 61-680 Poznań, Poland
Bibliografia
  • 1. Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5: 89-191.
  • 2. Allen, J.R.L., 1982. Sedimentary Structures: their Character and Physical Basis. Developments in Sedimentology, 30. Elsevier, Amsterdam.
  • 3. Allen, J.R.L., 1984. Parallel lamination developed from upper-stage plane beds: a model based on the larger coherent structures of the turbulent boundary layer. Sedimentary Geology, 39: 227-242.
  • 4. Allen, J.R.L., Banks, N.L., 1972. An interpretation and analysis of recumbent-folded deformed cross-bedding. Sedimentology, 19: 257-283.
  • 5. Alsop, G.I., Marco, S., 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33: 433-457.
  • 6. Alsop, G.I., Marco, S., Weinberger, R., Levi, T., 2016. Sedimentary and structural controls on seismogenic slumping within mass transport deposits from the Dead Sea Basin. Sedimentary Geology, 344: 71-90.
  • 7. Aslan, A., Autin, W.J., 1999. Evolution of the Holocene Mississippi River floodplain, Ferriday, Louisiana: insights on the origin of fine-grained floodplains. Journal of Sedimentary Research, 69: 800-815.
  • 8. Bechtel, A., Widera, M., Woszczyk, M., 2019. Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relationships with vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum. Organic Geochemistry, 138: 103908.
  • 9. Bechtel, A., Widera, M., Lücke, A., Groß, D., Woszczyk, M., 2020. Petrological and geochemical characteristics of xylites from the First Lusatian lignite seam (Konin Basin, Poland): implications for floral sources, decomposition and environmental conditions. Organic Geochemistry, 147: 104052.
  • 10. Bielowicz, B., 2012. A new technological classification of low-rank coal on the basis of Polish deposits. Fuel, 96: 497-510.
  • 11. Bridge, J.S., 2003. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Blackwell Publishing, Malden.
  • 12. Bristow, C.S., Skelly, R.L., Ethridge, F.G., 1999. Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology, 46: 1029-1047.
  • 13. Burns, C., Mountney, N.P., Hodgson, D.M., Colombera, L., 2017. Anatomy and dimensions of fluvial crevasse-splay deposits: examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A. Sedimentary Geology, 351: 21-35.
  • 14. Byun, U.H., van Loon, A.J., Kwon, Y.K., Ko, K., 2019. A new type of slumping-induced soft-sediment deformation structure: the envelope structure. Geologos, 25: 111-124.
  • 15. Chomiak, L., 2020. Architecture, sedimentology and depositional model for the formation of crevasse splays within a lignite seam at the Tomisławice opencast mine near Konin in central Poland. Geologos, 26: 25-37.
  • 16. Chomiak, L., Wachocki, R., Maciaszek, P., Widera, M., Zieliński, T., 2019a. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland). Geological Quarterly, 63 (1): 162-177.
  • 17. Chomiak, L., Wachocki, R., Maciaszek, P., Widera M., Zieliński T., 2019b. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland) - reply. Geological Quarterly, 63 (2): 429-433.
  • 18. Collinson, J.D., Thompson, D.B., 1982. Sedimentary Structures. Allen and Unwin, London.
  • 19. Dadlez, R., Jaroszewski, W., 1994. Tektonika (in Polish). Wydawnictwo Naukowe PWN, Warszawa.
  • 20. Dadlez, R., Marek, S., Pokorski, J., 2000. Mapa Geologiczna Polski bez kenozoiku w skali 1:1000 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 21. Dasgupta, P., 2008. Experimental decipherment of the soft-sediment deformation observed in the upper part of the Talchir Formation (Lower Permian), Jharia Basin, India. Sedimentary Geology, 205: 100-110.
  • 22. Davies-Vollum, K.S., Kraus, M.J., 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology, 140: 235-245.
  • 23. Farrell, K.M., 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology, 139: 93-150.
  • 24. Kasiński, J.R., Słodkowska, B., 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60 (4): 959-974.
  • 25. Kędzior, A., 2016. Reconstruction of an early Pennsylvanian fluvial system based on geometry of sandstone bodies and coal seams: the Zabrze Beds of the Upper Silesia Coal Basin, Poland. Annales Societatis Geologorum Poloniae, 86: 437-472.
  • 26. Kolcon, I., Sachsenhofer, R.F., 1999. Petrography, palynology and depositional environments of the early Miocene Oberdorf lignite seam (Styrian Basin, Austria). International Journal of Coal Geology, 41: 275-308.
  • 27. Kundu, A., Goswami, B., Eriksson, P.G., Chakraborty, A., 2011. Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India. Journal of Earth System Science, 120: 167-181.
  • 28. Kwiecińska, B., Wagner, M., 1997. Classification of qualitative features of brown coal from Polish deposits according to petrographical, chemical and technological criteria (in Polish with English summary). Wydawnictwo Centrum PPGSMiE Polskiej Akademii Nauk, Kraków.
  • 29. Kwiecińska, B., Wagner, M., 2001. Application of Reflectance in Natural and Technological Classification of Brown Coal (Lignite) (in Polish with English summary). Wydawnictwo Akademii Górniczo-Hutniczej, Kraków.
  • 30. Leedal, G.P., Walker, G.P.L., 1950. A restudy of the Ingletonian Series of Yorkshire. Geological Magazine, 87: 57-66.
  • 31. Li, W., Chen, J., Wang, L., Fang, X., Zhang, Y., 2019. Slump sheets as a record of regional tectonics and paleogeographic changes in South China. Sedimentary Geology, 392: 105525.
  • 32. Lundegard, P.D., Samuels, N.D., 1980. Field classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology, 50: 781-786.
  • 33. Maciaszek, P., Chomiak, L., Wachocki, R., Widera, M., 2019. The interpretive significance of ripple-derived sedimentary structures within the late Neogene fluvial succession, central Poland. Geologos, 25: 1-13.
  • 34. Maciaszek, P., Chomiak, L., Urbański, P., Widera, M., 2020. New insights into the genesis of the “Poznań Clays” - upper Neogene of Poland. Civil and Environmental Engineering Reports, 30: 18-32.
  • 35. Markič, M., Sachsenhofer, R.F., 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33: 229-254.
  • 36. Mazumder, R., Altermann, W., 2007. Discussion on new aspects of deformed cross-strata in fluvial sandstones: examples from Neoproterozoic formations in northern Norway by S.L. Røe and M. Hermansen. Sedimentary Geology, 198: 351-353.
  • 37. McKee, E.D., Reynolds, M.A., Baker, C.H., 1962. Experiments on intraformational recumbent folds in crossbedded sand. US Geological Survey Professional Paper, 450-D: 155-160.
  • 38. Miall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews, 13: 1-62.
  • 39. Molina, J.M., Alfaro, P., Moretti, M., Soria, J.M., 1998. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova, 10: 145-150.
  • 40. Moretti, M., Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic' criteria for recognizing ancient seismites. Journal of Palaeogeography, 3: 162-173.
  • 41. Moretti, M., Alfaro, P., Caselles, O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304: 369-383.
  • 42. Moretti, M., Alfaro, P., Owen, G., 2016. The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344: 1-4.
  • 43. Olabode, S.O., 2016. Soft sediment deformation structures in the Maastrichtian Patti Formation, southern Bida Basin Nigeria: Implications for the assessment of endogenic triggers in the Maastrichtian sedimentary record. Open Journal of Geology, 6: 410-438.
  • 44. Owen, G., 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, 43: 279-293.
  • 45. Piwocki, M., Ziembińska-Tworzydło, M., 1997. Neogene of the Polish Lowlands - lithostratigraphy and pollen-spore zones. Geological Quarterly, 41 (1): 21-40.
  • 46. Rajchl, M., Uličný, D., Mach, K., 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology, 55: 1419-1447.
  • 47. Ramsay, J.G., Huber, M.I., 1987. The Techniques of Modern Structural Geology - 2: Folds and Fractures. Academic Press, London.
  • 48. Rickard, M.J., 1971. A classification diagram for fold orientation. Geological Magazine, 108: 23-26.
  • 49. Roberts, D.G., 1972. Slumping on the eastern margin of the Rockall Bank. North Atlantic Ocean. Marine Geology, 13: 225-237.
  • 50. Røe, S.L., Hermansen, M., 2006. New aspects of deformed cross-strata in fluvial sandstones: examples from Neoproterozoic formations in Northern Norway. Sedimentary Geology, 186: 283-293.
  • 51. Shanmugam, G., 2017. The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: Implications. Journal of Palaeogeography, 6: 12-44.
  • 52. Strachan, L.J., 2008. Flow transformations in slumps: a case study from the Waitemata Basin, New Zealand. Sedimentology, 55: 1311-1332.
  • 53. Strachan, L.J., Alsop, G.I., 2006. Slump folds as estimators of palaeoslope: a case study from the Fisherstreet Slump of County Clare, Ireland. Basin Research, 18: 451-470.
  • 54. Taƫgin, C.K., Orhan, H., Türkmen, I., Aksoy, E., 2011. Soft-sediment deformation structures in the late Miocene Ţelmo Formation around Adyiaman area, Southeastern Turkey. Sedimentary Geology, 235: 277-291.
  • 55. Teichmüller, M., 1958. Rekonstruktion verschiedener Moortypen des Hauptflözes der niederrheinischen Braunkohle. Fortschrift in der Geologie von Rheinland und Westfalen, 2: 599-612.
  • 56. Teichmüller, M., 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12: 1-87.
  • 57. Ticleanu, N., Scradeanu, D., Popa, M., Milutinovici, S., Popa, R., Preda, I., Ticleanu, M., Savu, C., Diaconita, D., Barus, T., Petrescu, I., Dinulescu, C., Maftei, R., 1999. The relation between the lithotypes of Pliocene coals from Oltenia and their main quality characteristics. Bulletin of the Czech Geological Survey, 74: 169-174.
  • 58. Van Asselen, S., Stouthamer, E., Van Asch, Th.W.J., 2009. Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling. Earth-Science Reviews, 92: 35-51.
  • 59. Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3-55.
  • 60. Van Loon, A.J., 2019. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland): comment. Geological Quarterly, 63 (2): 424-428.
  • 61. Waldron, J.W.F., Gagnon, J.F., 2011. Recognizing soft sediment structures in deformed rocks of orogens. Journal of Structural Geology, 33: 271-279.
  • 62. Whitmore, J.H., Forsythe, G., Garner, P.A., 2015. Intraformational Parabolic Recumbent Folds in the Coconino Sandstone (Permian) and Two Other Formations in Sedona, Arizona (USA). Answers Research Journal, 8: 21-40.
  • 63. Widera, M., 2007. Lithostratigraphy and Palaeotectonics of the Sub-Pleistocene Cenozoic of Wielkopolska (in Polish with English summary). Adam Mickiewicz University Press, Poznań.
  • 64. Widera, M., 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos, 18: 1-11.
  • 65. Widera, M., 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65: 367-368.
  • 66. Widera, M., 2016a. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: new evidence from Middle Miocene deposits of central Poland. Sedimentary Geology, 335: 150-165.
  • 67. Widera, M., 2016b. An overview of lithotype associations forming the exploited lignite seams in Poland. Geologos, 22: 213-225.
  • 68. Widera, M., 2017. Sedimentary breccia formed atop a Miocene crevasse-splay succession in central Poland. Sedimentary Geology, 360: 96-104.
  • 69. Widera, M., 2019. What can be learned about the deposition and compaction of peat from the Miocene lignite seam exposed in the Chłapowo Cliff on the Polish coast of the Baltic Sea? Geology, Geophysics and Environment, 45: 111-119.
  • 70. Widera, M., Kita, A., 2007. Paleogene marginal marine sedimentation in central-western Poland. Geological Quarterly, 51 (1): 79-90.
  • 71. Widera, M., Jachna-Filipczuk, G., Kozula, R., Mazurek, S., 2007. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. International Journal of Earth Sciences, 96: 947-955.
  • 72. Widera, M., Chomiak, L., Gradecki, D., Wachocki, R., 2017a. Crevasse splay deposits from the Miocene of central Poland near Konin (in Polish with English summary). Przegląd Geologiczny, 65: 251-258.
  • 73. Widera, M., Kowalska, E., Fortuna, M., 2017b. A Miocene anastomosing river system in the area of Konin Lignite Mine, central Poland. Annales Societatis Geologorum Poloniae, 87: 157-168.
  • 74. Widera, M., Chomiak, L., Zieliński, T., 2019. Sedimentary facies, processes and paleochannel pattern of an anastomosing river system: an example from the Upper Neogene of Central Poland. Journal of Sedimentary Research, 89: 487-507.
  • 75. Woodcock, N.H., 1979. The use of slump structures as palaeoslope orientation estimators. Sedimentology, 26: 83-99.
  • 76. Wolf, M., 1988. Torf und Kohle. In: Sedimente und Sedimentgesteine - Teil II (ed. H. Füchtbauer): 683-730. Schweizerbart, Stuttgart.
  • 77. Worobiec, E., Widera, M., Worobiec, G., Kurdziel, B., 2020. Middle Miocene palynoflora from the Adamów lignite deposit, central Poland. Palynology, 44: doi: 10.1080/01916122.2019.1697388.
  • 78. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693.
  • 79. Zieliński, T., 2014. Sedymentologia. Osady rzek i jezior (in Polish). Adam Mickiewicz University Press.
  • 80. Zieliński, T., Widera, M., 2020. Anastomosing-to-meandering transitional river in sedimentary record: a case study from the Neogene of central Poland. Sedimentary Geology, 404: 105677.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12b5788f-8272-4572-8772-cf7609680f49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.