PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is the general presentation of the synergic utilisation of medical knowledge, tissue engineering and materials engineering for fabrication of functional substitutes of damaged tissues in the case of which medical indications show that classical prosthetics/implantation cannot be completely avoided, and that it is also appropriate to achieve natural ingrowth of the implanted elements into a living tissue in the implant area. Design/methodology/approach: This refers to post-injury losses, post-resection losses, as well as those originating from operative treatment of cancerous tumours or inflammation processes. Implantable biomedical devices are currently aggregately considered to be medical bionic implants where bionics is understood as production and investigation of biological systems to prepare and implement artificial engineering systems which can restore the lost functions of biological systems. Findings: The development of new hybrid technologies of bioactive and engineering materials for personalised scaffolds of tissues and bones requires a number of basic research and application work. They are presented numerous examples of the needs of the research for application of various bioactive and engineering materials, and their respective materials processing and tissue engineering technologies for manufacturing of the hybrid personalised implants and scaffolds. Research limitations/implications: There are no reports in the references about an original concept presented by the Author of introduction of prosthetics/implantation and tissue engineering techniques for the purpose of natural ingrowth of the implanted elements into a living tissue in the implant area without having to use mechanical devices, at least in the connection (interface) zone of bone or organ stumps with prosthetic/implant elements. Practical implications: They are open up vast possibilities for the application of the hybrid technologies of bioactive and engineering materials for personalized scaffolds of tissues and bones in accordance with the concept of the Author, presented in this paper. Medical bionic implants encompass numerous solutions eliminating various disfunctions of a human organism, among other implants of the cardiovascular system (stents, vessel prostheses, heart valves, pacemakers, defibrillators), digestive system implants, neuron devices (implants and neuronal prostheses to the central (CNS) and peripheral nervous system (PNS), the cochlea, retina), orthopaedic prostheses (bone grafts, bone plates, fins and other connecting and stabilising devices, including screws applied in the area of ankles, knees and hands, bars and pins for stabilising fractured limbs), screws and plates in skull-jaw-face reconstructions, dental implants, and also scaffolds of bones and tissues in tissue engineering. Originality/value: The Author’s idea for the embracing hybrid technologies of bioactive and engineering materials with titanium alloys including personalised scaffolds of tissues and bones will be created. It is also a challenge to achieve a synergy of clinical effects obtained with classical prosthetics/implantation of large lost post-injury or post-resection recesses together with the use of achievements in advanced tissue engineering methods at least in the interface zone of bone or organ stumps with prosthetic elements/implants.
Rocznik
Strony
53--80
Opis fizyczny
Bibliogr. 306 poz.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Arsiwala, P. Desai, V. Patravale, Recent advances in micro/nanoscale biomedical implants, Journal of Controlled Release 189 (2014) 25-45.
  • [2] Biomaterials Market for Implantable Devices (Material Type - Metals, Polymers, Ceramics and Natural, Applications - Cardiology, Orthopedics, Dental, Ophthalmology and Others) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/biomaterials-market.html .
  • [3] Orthopedic Devices Market (Hip, Knee, Spine, Shoulder, Elbow, Foot and Ankle, Craniomaxillofacial and Other Extremities) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/orthopedic-devices-market.html .
  • [4] Health and Health Care in2012, GUS, Warsaw 2012.
  • [5] Statistical Yearbook of the Republic of Poland 2013, GUS, Warsaw 2014.
  • [6] L.A. Dobrzański et al., Development of a new composite material with a gradient of the polymer matrix reinforced with aramid fibers and titanium powder particles, for the production of esophageal prosthesis intrasystemic, Project N507 422136, Gliwice 2009-2011.
  • [7] L.A. Dobrzański, Report on the main areas of the materials science and surface engineering own research, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 514-549.
  • [8] L.A. Dobrzański et al., Establishing a methodology of computer-aided material, technological and construction design of fixed dental multi-component prostheses for predicting their functional properties, Project N507 438539, Gliwice 2010-2013.
  • [9] L.A. Dobrzański et al., Determining the importance of the effect of the onedimensional nanostructural materials on the structure and properties of newly developed functional nanocomposite and nanoporous materials, Project UMO-2012/07/B/ST8/04070, Gli-wice 2013.
  • [10] L.A. Dobrzański, Descriptive metal science, Publi-shing House of the Silesian University of Technology, Gliwice, 2013 (in Polish).
  • [11] L.A. Dobrzański et al., Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering, Project UMO-2013/ 08/M/ST8/00818, Gliwice 2013.
  • [12] L.A. Dobrzański et al., Foresight of surface properties formation leading technologies of engineering materials and biomaterials. Project UDA-POIG.01.01.01-00.23/08-00, Gliwice 2009-2012.
  • [13]L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [14] L.A. Dobrzański, A.J. Nowak, W. Błażejewski, R. Rybczyński, The concept of preparation of oesophageal prosthesis based on long-fiber composite material. Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 18-24.
  • [15] L.A. Dobrzański, M. Hetmańczyk, E. Łągiewka, Current state and development perspectives of Materials Science and Engineering in Poland, Journal of Achievements in Materials and Manufacturing Engineering 43, 782-789;
  • [16] K. Cholewa-Kowalska, J. Kokoszka, M. Łączka, Ł.Niedźwiedzki, W. Madej, A.M. Osyczka, Gel derived bioglass as a compound of hydroxyapatite composites. Biomedical Materials 4 (2009) 055007.
  • [17] P. Konieczny, A.G. Goralczyk, R. Szmyd, L. Skaliak, J. Koziel, F.L. Filon, M. Crosera, A. Cierniak, E.K. Zuba-Surma, J. Borowczyk, E. Laczna, J. Drukala, E. Pyza, D. Semik, O. Woznicka, A. Klein, J. Jura, Effects triggered by platinum nanoparticles on primary keratinocytes, International Journal of Nanomedicine 8/1 (2013) 3963-3975.
  • [18] M. Kozdęba, J. Borowczyk, E. Zimolag, D. Dziga, M. Wasylewski, Z. Madeja, J. Drukala, Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes, Toxicon 80 (2014) 38-46.
  • [19] R. Major, F. Bruckert, J.M. Lackner, J. Marczak, B. Major, Surface treatment of thin-film materials to allow dialogue between endothelial and smooth muscle cells and the effective inhibition of platelet activation. The Royal Society of Chemistry: Advances 4 (2014) 9491-9502.
  • [20] A. Mzyk, R. Major, M. Kot, J. Gostek, P. Wilczek, B. Major, Chemical control of polyelectrolyte film properties for an effective cardiovascular implants endo-thelialization, Archives of Civil and Mechanical Engi-neering 14/2 (2014) 262-268
  • [21] B. Major et al., CardioBioMat – Nanostructural materials for biomedical cardiovascular systems, International Project ERA-NET MNT, 2009-2012.
  • [22] P. Tomasik, J. Spindel, L. Miszczyk, A. Chrobok, B. Koczy, J. Widuchowski, T. Mrozek, J. Matysiakiewicz, B. Pilecki Treatment and differential diagnosis of aneurysmal bone cyst based on our own experience, Ortopedia Traumatologia Rehabilitacja 11/5 (2009) 467-475.
  • [23] A.B. Ostałowska, S. Kasperczyk, A. Kasperczyk, L. Słowińska, M. Marzec, T. Stołtny, B. Koczy, E. Birkner, Oxidant and anti-oxidant systems of synovial fluid from patients with knee post-traumatic arthritis, Journal of Orthopaedic Research 25/6 (2007) 804-812.
  • [24] T. Stołtny, B. Koczy, W. Wawrzynek, L. Miszczyk, Heterotopic ossification in patients after total hip replacement, Ortopedia Traumatologia Rehabilitacja 9/3 (2007) 264-272.
  • [25] T. MroĪek, J. Spindel, L. Miszczyk, B. Koczy, A. Chrobok, B. Pilecki, P. Tomasik, J. Matysiakiewicz, Treatment methods for neoplastic metastates and tumor-like changes in the bodies and epiphyses of long bones using polymethyl methacrylate cement and bone grafting, Ortopedia Traumatologia Rehabilitacja 7/5 (2005) 481-485.
  • [26] P. Tomasik, J. Spindel, B. Koczy, A. Chrobok, T. Mrożek, J. Matysiakiewicz, L. Miszczyk, Clinical experience in the application of allogenic grafts from a bone tissue bank in the surgical treatment of tumor-like bone lesions, Ortopedia Traumatologia Rehabilitacja 7/5 (2005) 476-480.
  • [27] M. Olakowski, H. Mieczkowska-Palacz, E. Olakowska, P. Lampe, Surgical management of pancreatico-pleural fistulas, Acta Chirurgica Belgica 109/6 (2009) 735-740.
  • [28] J. Dec, T.S. Gaździk, H. Bursig, A. Wysocka, J. Jędrysik, H. Noga, Treatment of full thickness knee cartilage defects using Autologous Chondrocyte Implantation, Arthroscopy and Joint Surgery 5/3-4 (2009) 25-26.
  • [29] A. Wysocka-Wycisk, F. Kępski, H. Bursig, S. Dyląg, T.S. Gaździk, Autologous chondrocytes culture, The Journal of Orthopaedics Trauma Surgery and Related Research 4/20 (2010) 110-115.
  • [30] T.S. Gaździk, A. Wysocka, M. Marek, J. Dec, J. Jędrysik, H. Noga, H. Bursig, S. Dyląg, Further observation on the use of autological chondrocytes in the treatment of demages of knee joint cartilage, The Journal of Orthopaedics Trauma Surgery and Related Research 2/22 (2011) 69-74.
  • [31] M.B. Nessler, J.W. Puchała, J.A. Drukała, Changes in me plasma cytokine and growth factor profile are associated with impaired healing in paediatric patients treated with INTEGRA® for reconstructive procedures, Burns 39/4 (2013) 667-673.
  • [32] L.A. Dobrzański, M. Szczęsna, eds., Laboratory classes in materials science, Open Access Library 12 (2013) 1-215 (in Polish).
  • [33] L.A. Dobrzański, T. Tański, eds., Laboratory classes in materials engineering and nanotechnology, Open Access Library 10 (2013) 1-763 (in Polish).
  • [34] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, For-mation of structure and properties of engineering materials, Publishing House of the Silesian University of Technology, Gliwice, 2013 (in Polish).
  • [35] A.D. Dobrzańska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8 (2013) 1-823 (in Polish).
  • [36] J. Nowacki, L.A. Dobrzański, F. Gustavo, Intramedullary implants for osteosynthesis of long bones, Open Access Library 11 (2012) 1-150 (in Polish).
  • [37] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer aided design in Selective Laser Sintering (SLS) – application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [38] L.A. Dobrzański, A. Hudecki, Composite nanofibers with bioactive core and antibacterial coating for tissue scaffolds produced by electrospinning, prepared for print.
  • [39] A.J. Nowak, L.A. Dobrzański, R. Rybczyński, R. Mech, Finite Element Method application for model-ling of internal oesophageal prosthesis, Archives of Materials Science and Engineering 64/2 (2013) 198-204.
  • [40] T. Stefański, P. Malara, A. Kloc-Ptaszna, B. Janoszka, L. Postek-Stefańska, K. Tyrpień-Golder, L.A. Dobrzaski, Erosive potential of calcium-supplemented citric acid on bovine enamel, Archives of Materials Science and Engineering 64/2 (2013) 175-181.
  • [41] J.ĩmudzki, G. Chladek, P. Malara, L.A. Dobrzański, M. Zorychta, K. Basa, The simulation of mastication efficiency of the mucous-borne complete dentures, Archives of Materials Science and Engineering 63/2 (2013) 75-86.
  • [42] G. Chladek, J. Żmudzki, P. Malara, L.A. Dobrzański, C. Krawczyk, Effect of Influence of introducing silver nanoparticles on tribological characteristics of soft liner, Archives of Materials Science and Engineering 62/1 (2013) 5-14.
  • [43] M. Król, L.A. Dobrzański, à. Reimann, I. Czaja, Surface quality in selective laser melting of metapowders, Archives of Materials Science and Engineering 60/2 (2013) 87-92.
  • [44] Ł. Reimann, L.A. Dobrzański, Influence of the casting temperature on dental Co-base alloys properties, Archives of Materials Science and Engineering 60/1 (2013) 5-12.
  • [45] L.A. Dobrzański, Ł. Reimann, Digitization procedure of creating 3D model of dental bridgework reconstruction, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 469-476.
  • [46] L.B. Dobrzański, P. Malara, J. Pacyna, Comparative studies of selected engineering materials containing titanium and selective laser sintering technology SLS and computer-aided manufacturing CAD with the re-commendation for a clinical use for permanent dentures and dental surgical supplement, 2014, in progress.
  • [47] Z. Jaegermann, A. Ślósarczyk, Dense and porous co-rundum bioceramics in medical applications, University Scientific and Technical Publishing House, Krakow 2007 (in Polish).
  • [48] E. Czarnowska, J. Morgiel, M. Ossowski, A. Sowińska, T. Wierzchoń, Microstructure and biocompatibility of titanium oxide produced on a nitrided surface layer under glow discharge conditions, Journal of Nanoscience and Nanotechnology 11/10 (2011) 8917-8923.
  • [49] C.K. Chua, M.J.J. Liu, S.M. Chou, Additive Manufacturing-assisted scaffold-based Tissue Engineering. In: Innovative Developments in Virtual and Physical Prototyping, Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 2011, 13-21.
  • [50] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51/3 (2013) 245-256.
  • [51] P. Zorlutuna, N. Annabi, G. Camci-Unal, M. Nikkhah, J.M. Cha, J.W. Nichol, A. Manbachi, H. Bae, S. Chen, A. Khademhosseini, Microfabricated Biomaterials for Engineering 3D Tissues, Advanced Materials 24/14 (2012) 1782-1804.
  • [52] S.E. Yang., K.P. Leong, Z.H. Du, C.K. Chua, The de-sign of scaffolds for use in tissue engineering. Part 1. Traditional factors, Tissue Engineering 7/6 (2001) 679-689.
  • [53] P.I. Bartolo, C.K. Chua, H.A. Almeida, S.M. Chou, A.S.C. Lim, Biomanufacturing for tissue engineering: Present and future trends, Virtual and Physical Proto-typing 4/4 (2009) 203-216.
  • [54] J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 27/7 (2006) 964-973.
  • [55] L.L. Hench, Ö. Andersson, Bioactive glasses, in: L.L. Hench, J. Wilson, eds., An Introduction to Biocera-mics, Word Scientific, 1993, 41-62.
  • [56] L. Ciożek, J. Karaś, A. Olszyna, S. Traczyk, New silver-containing bioglasses, Engineering of Bioma-terials 11/77-80 (2008) 25-27.
  • [57] L. Ciołek, J. Karaś, A. Olszyna, E. Zaczyńska, A. Czarny, B. Żywicka, In vitro studies of cytotoxicity of bioglass containing silver, Engineering of Biomaterials 12/89-91 (2009) 91-93.
  • [58] L. Ciołek, J. Karaś, A. Olszyna, E. Zaczyńska, A. Czarny, B. Żywicka, In vitro antibacterial activity of silver-containing bioglasses, Engineering of Biomaterials 13/100-101 (2010) 21-23.
  • [59] B.S. Miguel, R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, F.E. Weber, Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds, Journal of Biomedical Materials Research Part A 94A/4 (2010) 1023-1033.
  • [60] C. Wu, Y. Zhou, W. Fan, P. Han, J. Chang, J. Yuen, M. Zhang, Y. Xiao, Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering, Biomaterials 33/7 (2012) 2076-2085.
  • [61] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27/18 (2006) 3413-3431.
  • [62] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26/27 (2005) 5474-5491.
  • [63] C.E. Wilson, C.A. van Blitterswijk, A.J. Verbout, W.J.A. Dhert, J.D. de Bruijn, Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique, Journal of Materials Science. Materials in Medicine 22/1 (2011) 97-105.
  • [64] P. Lichte, H.C. Pape, T. Pufe, P. Kobbe, H. Fischer, Scaffolds for bone healing: Concepts, materials and evidence, Injury 42/6 (2011) 569-573.
  • [65] S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends in Biotechnology 30/10 (2012) 546-554.
  • [66] S.-H. Lee, H. Shin, Matrices and scaffolds for delivery of bioactive molecules inbone and cartilage tissue engineering, Advanced Drug Delivery Reviews 59/4-5 (2007) 339-359.
  • [67] H.-Y. Cheung, K.-T. Lau, T.-P. Lu, D. Hui, A critical review on polymer-based bioengineered materials for scaffold development, Composites Part B: Enginee-ring 38/3 (2007) 291-300.
  • [68] W. Xue, A. Bandyopadhyay, S. Bose, Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials 91B/2 (2009) 831-838.
  • [69] M.W. Laschke, A. Strohe, M.D. Menger, M. Alini, D. Eglin, In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering, Acta Biomaterialia 6/6 (2010) 2020-2027.
  • [70] S.S. Banerjee, S. Tarafder, N.M. Davies, A. Bandyo-padhyay, S. Bose, Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of ȕ-TCP ceramics, Acta Biomaterialia 6/10 (2010)4167-4174.
  • [71] V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties, Acta Biomaterialia 6/8 (2010) 3349-3359.
  • [72] K. Das, V.K. Balla, A. Bandyopadhyay, S. Bose, Sur-face modification of laser-processed porous titanium for load-bearing implants, Scripta Materialia 59/6 (2008) 822-825.
  • [73] F. Witte, H. Ulrich, C. Palm, E. Willbold, Biodegradable magnesium scaffolds: Part II: Periimplant bone remodelling, Journal of Biomedical Materials Re-search Part A 81A/3 (2007) 757-765.
  • [74] X. Zhang, X.-W. Li, J.-G. Li, X.-D. Sun, Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering, Materials Science and Engineering C 42 (2014) 362-367.
  • [75] K.F. Farraro, K.E. Kim, S.L.-Y. Woo, J.R. Flowers, M.B. McCullough, Revolutionizing orthopaedic bio-materials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering, Journal of Biomechanics 47/9 (2014) 1979-1986.
  • [76] R. Nowosielski, A. Gawlas-Mucha, A. Borowski, A. Guwer, Fabrication and properties of magnesium based alloys Mg-Ca, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 367-374.
  • [77] Y. Yun, Z. Dong, N. Lee, Y. Liu, D. Xue, X. Guo, J. Kuhlmann, A. Doepke, H.B. Halsall, W. Heineman, S. Sundaramurthy, M.J. Schulz, Z. Yin, V. Shanov, D. Hurd, P. Nagy, W. Li, C. Fox, Revolutionizing biodegradable metals, Materials Today 12/10 (2009) 22-32.
  • [78] L. Jaworska, B. De Benedetti, 2014, private information.
  • [79] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomaterialia 8/3 (2012) 925-936.
  • [80] N. Li, Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, Journal of Materials Science and Technology 29/6 (2013) 489-502.
  • [81] G. Wu, J.M. Ibrahim, P.K. Chu, Surface design of bio-degradable magnesium alloys – A review, Surface & Coatings Technology 233 (2013) 2-12.
  • [82] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biome-dical coatings on magnesium alloys – A review, Acta Biomaterialia 8/7 (2012) 2442-2455.
  • [83] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Materials Letters 132 (2014) 106-110.
  • [84] Z. Chen, X. Mao, L. Tan, T. Friis, C. Wu, R. Craw-ford, Y. Xiao, Osteoimmunomodulatory properties of magnesium scaffolds coated with ȕtricalcium phosphate, Biomaterials 35/30 (2014) 8553-8565.
  • [85] X.N. Gu, W.R. Zhou, Y.F. Zheng, L.M. Dong, Y.L. Xi, D.L. Chai, Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites, Materials Science and Engineering C 30/6 (2010) 827-832.
  • [86] A.K. Khanra, H.C. Jung, K.S. Hong, K.S. Shin, Comparative property study on extruded Mg–HAP and ZM61–HAP composites, Materials Science & Engineering A 527/23 (2010) 6283-6288.
  • [87] A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, K.S. Shin, Microstructure and mechanical properties of Mg-HAP composites, Bulletin of Material Science 33/1 (2010) 43-47.
  • [88] D.B. Liu, M.F. Chen, X.W. Wang, Fabrication and corrosion biodegradable properties of the HA/Mg biocomposite, Rare Metal Materials and Engineering 37/12 (2008) 2201-2205.
  • [89] F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, W. Dietzel, N. Hort, Biodegradable magnesium–hydroxyapatite metal matrix composites, Biomaterials 28/13 (2007) 2163-2174.
  • [90] X.Y. Ye, M.F. Chen, M. Yang, J. Wei, D.B. Liu, In vitro corrosion resistance and cytocompatibility of nanohydroxyapatite reinforced Mg-Zn-Zr compo-sites, Journal of Materials Science: Materials in Medicine 21 (2010) 1321-1328.
  • [91] M. Razavi, M.H. Fathi, M. Meratian, Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications, Materials Science and Engineering A 527/26 (2010) 6938-6944.
  • [92] A. Feng, Y. Han, The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites, Journal of Alloys and Compounds 504/2 (2010) 585-593.
  • [93] A. Papadimitropoulos, M. Mastrogiacomo, F. Peyrin, E. Molinari, V.S. Komlev, F. Rustichelli, R. Can-cedda, Kinetics of in vivo bone deposition by bone marrow stromal within a resorbable porous calcium phosphate scaffold: An X-ray computed microtomography study, Biotechnology and Bioengineering 98/1 (2007) 271-281.
  • [94] H. Naito, Y. Dohi, W.-H. Zimmermann, T. Tojo, S. Takasawa, T. Eschenhagen, S. Taniguch, The Effect of Mesenchymal Stem Cell Osteoblastic Differentiation on the Mechanical Properties of Engineered Bone-Like Tissue, Tissue Engineering Part A 17/17-18 (2011) 2321-2329.
  • [95] S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review, Acta Biomaterialia 8/4 (2012) 1401-1421.
  • [96] E. Verron, I. Khairoun, J. Guicheux, J.-M. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today 15/13-14 (2010) 547-552.
  • [97] N. Kimelman-Bleich, G. Pelled, Y. Zilberman, I. Kallai, O. Mizrahi, W. Tawackoli, Z. Gazit, D. Gazit, Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair, Molecular Therapy 19/1 (2010) 53-59.
  • [98] M. Keeney, J.J.J.P. van den Beucken, P.M. van der Kraan, J.A. Jansen, A. Pandit, The ability of a colla-gen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165), Biomaterials 31/10 (2010) 2893-2902.
  • [99] R.P. Lanza, R. Langer, J. Vacanti, eds., Principles of Tissue Engineering, AcademicPress, San Diego 2000. [100] A. Atala, R.P. Lanza, eds., Methods of Tissue Engineering, Academic Press, San Diego 2002.
  • [101] R. Langer, J.P. Vacanti, Tissue engineering. Science 260/5110 (1993) 920-926.
  • [102] Y.C. Fung, A Proposal to the National Science Foundation for An Engineering Research Center at UCSD. Center for the Engineering of Living Tissues, UCSD #865023, 2001.
  • [103] F. Yang, W.L. Neeley, M.J. Moore, J.M. Karp, A. Shukla, R. Langer, Tissue Engineering: The Thera-peutic Strategy of the Twenty-First Century, in: C.T. Laurencin, L.S. Nair, eds., Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL 2008, 3-32.
  • [104] N.A. Peppas, R. Langer, New challenges in biomaterials, Science 263/5154 (1994) 1715-1720.
  • [105] J.A. Hubbell, Biomaterials in tissue engineering, Biotechnology (N Y) 13/6 (1995) 565-576.
  • [106] J.A. Hubbell, Bioactive biomaterials, Current Opinion in Biotechnology 10/2 (1999) 123-129.
  • [107] K.E. Healy, A. Rezania, R.A. Stile, Designing biomaterials to direct biological responses, Annals of the New York Academy of Sciences 875 (1999) 24-35.
  • [108] R. Langer, D.A. Tirrell, Designing materials for bio-logy and medicine, Nature 428/6982 (2004) 487-492.
  • [109] M.P. Lütolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology 23/1 (2005) 47-55.
  • [110] F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials 26/30 (2005) 5991-5998.
  • [111] J. Elisseeff, A. Ferran, S. Hwang, S. Varghese, Z. Zhang, The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system, Stem Cells and Development 15/3 (2006) 295-303.
  • [112] N.S. Hwang, M.S. Kim, S. Sampattavanich, J.H. Baek, Z. Zhang, J. Elisseeff, Effects of threedimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells 24/2 (2006) 284-291.
  • [113] C.J. Bettinger, J.T. Borenstein, R. Langer, Micro-fabrication Techniques in Scaffold Development, in: C.T. Laurencin, L.S. Nair, eds., Nanotechnology and Tissue Engineering: The Scaffold, CRC Press Taylor & Francis Group, Boca Raton, FL 2008.
  • [114] C.E. Wilson, W.J. Dhert, C.A. van Blitterswijk, A.J. Verbout, J.D. De Bruijn, Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamar Blue assay and the effect on in vivo bone formation, Journal of Materials Science. Materials in Medicine 13/12 (2002) 1265-1269.
  • [115] M.C. Kruyt, J.D. De Bruijn, C.E. Wilson, F.C. Oner, C.A. van Blitterswijk, A.J. Verbout, W.J. Dhert, Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats, Tissue Engineering 9/2 (2003) 327-336.
  • [116] J. Folkman, Tumor angiogenesis: Therapeutic implications, New England Journal of Medicine 285/21 (1971) 1182-1186.
  • [117] D.J. Mooney, G. Organ, J.P. Vacanti, R. Langer, Design and fabrication of biodegradable polymer devices to engineer tubular tissues, Cell Transplant 3/2 (1994) 203-210.
  • [118] G. Li, A.S. Virdi, D.E. Ashhurst, A.H. Simpson, J.T. Triffitt, Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: Localization of the cells that express the mRNAs and the distribution of types I and II collagens, Cell Biology International 24/1 (2000) 25-33.
  • [119] J.E. Sanders, S.G. Malcolm, S.D. Bale, Y.N. Wang, S. Lamont, Prevascularization of a biomaterial using a chorioallontoic membrane, Microvascular Research 64/1 (2002) 174-178.
  • [120] G.F. Muschler, C. Nakamoto, L.G. Griffith, Engineering principles of clinical cell-based tissue engineering, Journal of Bone and Joint Surgery 86-A/7 (2004) 1541-1558.
  • [121] G. Helmlinger, F. Yuan, M. Dellian, R.K. Jain, Interstitial pH and pO2gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation, Nature Medicine 3/2 (1997) 177-182.
  • [122] M. Noga, A. Pawlak, B. Dybała, B. Dąbrowski, W. Swięszkowski, M. Lewandowska-Szumieł, Biological Evaluation of Porous Titanium Scaffolds (Ti-6Al-7Nb) with HAp/Ca-P surface seeded with Human Adipose Derived Stem Cells, International Scientific Conference E-MRS Fall Meeting, Warsaw, 2013.
  • [123] Y. Khan, M.J. Yaszemski, A.G. Mikos, C.T. Laurencin, Tissue engineering of bone: material and matrix considerations, Journal of Bone & Joint Surgery 90/Suppl.1 (2008) 36-42.
  • [124] J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Vascularization in tissue engineering, Trends Bio-technology 26/8 (2008) 434-441.
  • [125] H. Bramfeldt, G. Sabra, V. Centis, P. Vermette, Scaffold Vascularization: A Challenge for Three-Dimensional Tissue Engineering, Current Medicinal Chemistry 17/33 (2010) 3944-3967.
  • [126] R.K. Jain, P. Au, J. Tam, D.G. Duda, D. Fukumura, Engineering vascularized tissue, Nature Biotechnology 23 (2005) 821-823.
  • [127] S. Rumiński, B. Ostrowska, W. Swięszkowski, M. Lewandowska-Szumieł, Human Adipose-Derived Stem Cells differentiate into osteoblast-like cells on İ-Polycaprolactone/Tricalcium Phosphate Composite Scaffolds, International Scientific Conference E-MRS Fall Meeting, Warsaw, 2013.
  • [128] S. Rumiński, B. Ostrowska, W. Swięszkowski, M. Lewandowska-Szumieł, Osteogenic Differentiation of Human Adipose-Derived Stem Cells on Polycaprola-ctone/Tricalcium Phosphate Composite Scaffolds, Abstracts, European Chapter Meeting of the Tissue Engineering and Regenerative Medicine International Society, TERMIS, Istanbul, Turkey, 2013, 287.
  • [129] M. Kołodziejczyk, I. Kalaszczynska, J. Sadlo, J. Kolmas, W. Kolodziejski, à. Pajchel, G. Kapron, G. Wilczynski, M. Lewandowska-Szumieł, Maturation of Newly Deposited Calcium-Phosphate Crystals in Human Adipose Derived Stem Cells Culture after Cell Differentiation to Osteoblast in vitro, Abstracts, European Chapter Meeting of the Tissue Engineering and Regenerative Medicine International Society, TERMIS, Istanbul, Turkey, 2013, 100.
  • [130] M. Noga, A. Pawlak, B. Dybała, B. Dąbrowski, W. Swięszkowski, M. Lewandowska-Szumieł, Preparation and Evaluation of Biological Properties of Bioimplants Composed of Adipose Derived Stem Cells and Porous Titanium Scaffold (Ti-6Al-7Nb) with HAp/Ca-P Surface, Abstracts, TERMIS, Istanbul, Turkey, 2013, 733.
  • [131] M. Karoluk, A. Pawlak, E. Chlebus, The use of incremental SLM technology in the process of Ti-6Al-7Nb titanium alloy manufacturing for biomedical applications, XI Konferencja Naukowa im. Prof. Dagmary Tejszerskiej, Ustroń, 2014, 53-54 (in Polish).
  • [132] I.M. Wojak-Cwik, V. Hintze, M. Schnabelrauch, S. Moeller, P. Dobrzynski, E. Pamula, D. Scharnweber, Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: Impact on proliferation and osteogenic differentiation of human mesenchymal stem cells, Journal of Biomedical Materials Research Part A 101/11 (2013) 3109-3122.
  • [133] P. Wilczek, M. Zembala, T. Cichoń, R. Smolarczyk, S. Szala, M. Zembala, Scaffold construction for effective transfer of cardiac stem cells to the damaged heart, Kardiochirurgia i Torakochirurgia Polska 9/2 (2012) 231-242.
  • [134] E. Stodolak-Zych, A. Frączek-Szczypta, A. Wiecheü,M. Błażewicz, Nanocomposite Polymer Scaffolds for Bone Tissue Regeneration, Acta Physica Polonica A 121/2 (2012) 518-521.
  • [135] M.T. Błażewicz, et al., Nanocomposite materials for regenerative medicine, Project N N507 463537, 2009-2012.
  • [136] L. Rzeszutko, Z. Siudak, A. Włodarczak, A. Lekston, R. Depukat, A. Ochała, R.J. Gil, W. Balak, M. Marü,J. Kochman, W. Zasada, D. Dudek, Contemporary use of bioresorbable vascular scaffolds (BVS) in patients with stable angina and acute coronary syndromes. Polish National Registry, Kardiologia Polska 72/12 (2014) 1394-1399.
  • [137] J. Street, D. Winter, J.H. Wang, A. Wakai, A. Mc-Guinness, H.P. Redmond, Is human fracture hematoma inherently angiogenic? Clinical Orthopaedics and Related Research 378(2000) 224-237.
  • [138] J.M. Karp, F. Sarraf, M.S. Shoichet, J.E. Davies, Fibrin-filled scaffolds for bone-tissue engineering: An in vivo study, Journal of Biomedical Materials Research Part A 71/1 (2004) 162-171.
  • [139] K.F. Leong, C.M. Cheah, C.K. Chua, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs, Biomaterials 24/13 (2003) 2363-2378.
  • [140] L.S. Nair, C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, Advances in Biochemical Engineering, Biotechnology 102 (2006) 47-90.
  • [141] J. Velema, D. Kaplan, Biopolymer-based biomaterials as scaffolds for tissue engineering, Advances in Biochemical Engineering, Biotechnology 102 (2006) 187-238.
  • [142]J. Viola, B. Lal, O. Grad, The Emergence of Tissue Engineering as a Research Field. Arlington, The National Science Foundation, 2003, http://www.nsf.gov/pubs/2004/nsf0450/ .
  • [143] S.P. Bruder, D.J. Fink, A.I. Caplan, Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy, Journal of Cellular Biochemistry 56/3 (1994) 283-294.
  • [144] J.E. Aubin, Bone stem cells, Journal of Cellular Biochemistry - Suppl 30-31 (1998) 73-82.
  • [145] M.J. Shamblott, J. Axelman, S. Wang, E.M. Bugg, J.W. Littlefield, P.J. Donovan, P.D. Blumenthal, G.R. Huggins, J.D. Gearhart, Derivation of pluripotent stem cells from cultured human primordial germ cells, Proceedings of the National Academy of Sciences USA 95/23 (1998) 13726-13731.
  • [146] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282/5391 (1998) 1145-1147.
  • [147] M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multi-lineage potential of adult human mesenchymal stem cells, Science 284/5411 (1999) 143-147.
  • [148] V. Sottile, A. Thomson, J. McWhir, In vitro osteo-genic differentiation of human ES cells, Cloning Stem Cells 5/2 (2003) 149-155.
  • [149] C.M. Cowan, Y.Y. Shi, O.O. Aalami, Y.F. Chou, C. Mari, R. Thomas, N. Quarto, C.H. Contag, B. Wu, M.T. Longaker, Adipose-derived adult stromal cells heal critical-size mouse calvarial defects, Nature Bio-technology 22/5 (2004) 560-567.
  • [150] M.S. Kim, N.S. Hwang, J. Lee, T.K. Kim, K. Leong, M.J. Shamblott, J. Gearhart, J. Elisseeff, Musculoske-letal differentiation of cells derived from human embryonic germ cells, Stem Cells 23/1 (2005) 113-123.
  • [151] W.S. Hwang, Y.J. Ryu, J.H. Park, E.S. Park, E.G. Lee, J.M. Koo, H.Y. Jeon, B.C. Lee, S.K. Kang, S.J. Kim, C. Ahn, J.H. Hwang, K.Y. Park, J.B. Cibelli, S.Y. Moon, Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst, Science 303/5664 (2004) 1669-1674.
  • [152] R.P. Lanza, J.B. Cibelli, M.D. West, Prospects for the use of nuclear transfer in human transplantation, Nature Biotechnology 17/12 (1999) 1171-1174.
  • [153] C.L. Cetrulo Jr., Cord-blood mesenchymal stem cells and tissue engineering, Stem Cell Reviews and Reports 2/2 (2006) 163-168.
  • [154] D. Baksh, R. Yao, R.S. Tuan, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow, Stem Cells 25/6 (2007) 1384-1392.
  • [155] A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century, Trends in Molecular Medicine 7/6 (2001) 259-264.
  • [156] P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Engineering 7/2 (2001) 211-228.
  • [157] D. Baksh, J.E. Davies, P.W. Zandstra, Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion, Experimental Hematology 31/8 (2003) 723-732.
  • [158] R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Du-four, J.M. Gimble, B.A. Bunnell, Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue, Journal of Cellular Bio-chemistry 99/5 (2006) 1285-1297.
  • [159] K. Le Blanc, L. Tammik, B. Sundberg, S.E. Haynes-worth, O. Ringden, Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mito-genic responses independently of the major histocompatibility complex, Scandinavian Journal of Immunology 57/1 (2003) 11-20.
  • [160] S. Aggarwal, M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood 105/4 (2005) 1815-1822.
  • [161] B. Maitra, E. Szekely, K.Gjini, M.J. Laughlin, J. Dennis, S.E. Haynesworth, O.N. Koc, Human mesenchymal stem cells supportunrelated donor hemato-poietic stem cells and suppress T-cell activation, Bone Marrow Transplant 33/6 (2004) 597-604.
  • [162] N. Dagalakis, J. Flink, P. Stasikelis, J.F. Burke, I.V. Yannas, Design of an artificial skin. Part III. Control of pore structure, Journal of Biomedical Materials Research 14/4 (1980) 511-528.
  • [163] D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, R. Langer, Novel approach to fabricate porous spon-ges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials 17/14 (1996) 1417-1422.
  • [164] H.L. Wald, G. Sarakinos, M.D. Lyman, A.G. Mikos, J.P. Vacanti, R. Langer, Cell seeding in porous trans-plantation devices, Biomaterials 14/4 (1993) 270-278.
  • [165] M.J. Lima, V.M. Correlo, R.L. Reis, Micro/nano replication and 3D assembling techniques for scaffold fabrication, Materials Science and Engineering C 42 (2014) 615-621.
  • [166] G.J. Wang, C.L. Chen, S.H. Hsu, Y.L. Chiang, Bio-MEMS fabricated artificial capillaries for tissue engineering, Microsystem Technologies 12/1-2 (2005) 120-127.
  • [167] C.Y. Tay, S.A. Irvine, F.Y.C. Boey, L.P. Tan, S. Venkatraman, Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications, Small 7/10 (2011) 1361-1378.
  • [168] E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks, Science 276/5313 (1997) 779-781.
  • [169] J. Kim, H.N. Kim, Y. Lang, A. Pandit, Biologically inspired micro- and nanoengineering systems for functional and complex tissues, Tissue Engineering Part A 20/15-16 (2014) 2127-2130.
  • [170] M. Schvartzman, S.J. Wind, Robust pattern transfer of nanoimprinted features for sub-5-nm fabrication, Nano Letters 9/10 (2009) 3629-3634.
  • [171] S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, Sub-10 nm Imprint Lithography and Applications, Papers from the 41st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, Dana Point, California, USA, 1997, 2897-2904.
  • [172] S. Zhang, L. Yan, M. Altman, M Lässle, H. Nugent, F. Frankel, D.A. Lauffenburger, G.M. Whitesides, A. Rich, Biological surface engineering: a simple system for cell pattern formation, Biomaterials 20/13 (1999) 1213-1220.
  • [173] H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R.H. Austin, E. Chen, W. Wu, S.Y. Chou, Fabrication of 10 nm enclosed nanofluidic channels, Applied Phy-sics Letters 81/1 (2002) 174-176.
  • [174] S. Bose, S. Suguira, A. Bandyopadhyay, Processing of controlled porosity ceramic structures via fused deposition, Scripta Materialia 41/9 (1999) 1009-1014.
  • [175] J. Darsell, S. Bose, H.L. Hosick, A. Bandyopadhyay, From CT scan to ceramic bone graft, Journal of the American Ceramic Society 86(7 (2003) 1076-1080.
  • [176] D.W. Hutmacher, M. Sittinger, M.V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology 22/7 (2004) 354-362.
  • [177] E.M. Sachs, S.H. John, J.C. Michael, A.W. Paul, Three-dimensional printing techniques, Massachu-setts Institute of Technology, U.S. Patent 5,204,055, 1993.
  • [178] W.-Y. Yeong, C.-K. Chua, K.-F. Leong, M. Chandra-sekaran, M.-W. Lee, Indirect fabrication of collagen scaffold based on inkjet printing technique, Rapid Prototyping Journal 12(4 (2006) 229-237.
  • [179] T. Dutta Roy, J.L. Simon, J.L. Ricci, E.D. Rekow, V.P. Thompson, J.R. Parsons, Performance of hydro-xyapatite bone repair scaffolds created via three-dimensional fabrication techniques, Journal of Bio-medical Materials Research Part A 67/4 (2003) 1228-1237.
  • [180] A. Khalyfa, S. Vogt, J. Weisser, G. Grimm, A. Rech-tenbach, W. Meyer, M. Schnabelrauch, Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants, Journal of Materials Science. Materials in Medicine 18/5 (2007) 909-916.
  • [181] I. Manjubala, A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, P. Fratzl, Biomimetic mineral-organic composite scaffolds with controlled internal architecture, Journal of Materials Science. Materials in Medicine 16/12 (2005) 1111-1119.
  • [182] E. Sachlos, N. Reis, C. Ainsley, B. Derby, J.T. Czernuszka, Novel collagen scaffolds with predefined internal morphology made by solid freeform fabri-cation, Biomaterials 24/8 (2003) 1487-1497.
  • [183] M.J. Sawkins, K.M. Shakesheff, L.J. Bonassar, G.R. Kirkham, 3D Cell and Scaffold Patterning Strategies in Tissue Engineering, Recent Patents on Biomedical Engineering 6/1 (2013) 3-21.
  • [184] M.N. Cooke, J.P. Fisher, D. Dean, C. Rimnac, A.G. Mikos, Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth, Journal of Biomedical Materials Research Part B: Applied Biomaterials 64B/2 (2003) 65-69.
  • [185]K.W. Lee, S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, L. Lu, Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereo-lithography: Effects of resin formulations and laser parameters, Biomacromolecules 8/4 (2007) 1077-1084.
  • [186] B. Dhariwala, E. Hunt, T. Boland, Rapid prototyping of tissue-engineering constructs, using photopoly-merizable hydrogels and stereolithography, Tissue Engineering 10/9-10 (2004) 1316-1322.
  • [187] K. Arcaute, B.K. Mann, R.B. Wicker, Stereolithography of three-dimensional bioactive poly (ethylene glycol) constructs with encapsulated cells, Annals of Biomedical Engineering 34/9 (2006) 1429-1441.
  • [188] D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, Mechanical properties and cell cultu-ral response of polycaprolactone scaffolds designed and fabricated via fused deposition modelling, Jour-nal of Biomedical Materials Research 55/2 (2001) 203-216.
  • [189] H.-T. Liao, Y.-Y. Chen, Y.-T. Lai, M.-F. Hsieh, C.-P. Jiang, The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication, BioMed Research International (2014) Article ID 321549.
  • [190] M.E. Hoque, D.W. Hutmacher, W. Feng, S. Li, M.H. Huang, M. Vert, Y.S. Wong, Fabrication using a rapid prototyping system and in vitro characterization of PEG–PCL–PLA scaffolds for tissue engineering, Journal of Biomaterials Science, Polymer Edition 16/12 (2005) 1595-1610.
  • [191] K.C. Ang, K.F. Leong, C.K. Chua, M. Chandrasekaran, Investigation of mechanical properties and porosity relationships fabricated porous structures, Rapid Prototyping Journal 12/2 (2006) 100-105.
  • [192] J.J. Sun, C.J. Bae, Y.H. Koh, H.E. Kim, H.W. Kim, Fabrication of hydroxyapatite-poly(epsiloncaprolactone) scaffolds by a combination of the extrusion and bi-axial lamination processes, Journal of Materials Science. Materials in Medicine 18, (2007) 1017-1023.
  • [193] S.S. Crump, Apparatus and method for creating three-dimensional objects, Stratasys Inc., U.S. Patent 5,121,329A, 1992.
  • [194] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of the microporous titanium scaffolds produced by selective laser sintering, prepared for print.
  • [195] J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E.Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials 26/23 (2005) 4817-4827.
  • [196] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, W.S. Gui, W.S. Tan, F.E. Wiria, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Bio-medical Materials and Enginee-ring15/1-2 (2005) 113-124.
  • [197] C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, S. Peng, Structure and properties of nanohydroxypatite scaf-folds for bone tissue engineering with a selective laser sintering system, Nanotechnology 22/28 (2011) 285703.
  • [198] C.K. Chua, K.F. Leong, K.H. Tan, F.E. Wiria, C.M. Cheah, Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol=hydro-xyapatite biocomposite for craniofacial and joint defects, Journal of Materials Science. Materials in Medicine 15/10 (2004) 1113-1121.
  • [199] F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Poly-epsilon-caprolactone=hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta Biomaterialia3/1 (2007) 1-12.
  • [200] R. Murugan, S. Ramakrishna, Nano-featured scaf-folds for tissue engineering: A review of spinning methodologies, Tissue Engineering 12/3 (2006) 435-447.
  • [201] T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Bio-materials 29/13 (2008) 1989-2006.
  • [202] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules 3/2 (2002) 232-238.
  • [203] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nanomicro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26/15 (2005) 2603-2610.
  • [204] R. Murugan, S. Ramakrishna, Design strategies of tissue engineering scaffolds with controlled fiber orientation, Tissue Engineering 13/8 (2007) 1845-1866.
  • [205] J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science 294/5547 (2001) 1684-1688.
  • [206] J.D. Hartgerink, E. Beniash, S.I. Stupp, Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials, Proceedings of the National Academy of Sciences of the USA 99/8 (2002) 5133-5138.
  • [207] E. Beniash, J.D. Hartgerink, H. Storrie, J.C. Stendahl, S.I. Stupp Self-assembling peptide amphiphile nano-fiber matrices for cell entrapment, Acta Biomaterialia 1/4 (2005) 387-397.
  • [208] S. Zhang, F. Gelain, X.Zhao, Designer self-assem-bling peptide nanofiber scaffolds for 3D tissue cell cultures, Seminars in Cancer Biology 15/5 (2005) 413-420.
  • [209] F. Gelain, A. Horii, S. Zhang, Designer self-assembling peptide scaffolds for 3-d tissue cell cultures and regenerative medicine, Macromolecular Bioscience 7/5 (2007) 544-551.
  • [210] S.H. Um, J.B. Lee, N. Park, S.Y. Kwon, C.C. Umbach, D. Luo, Enzyme-catalysed assembly of DNA hydrogel, Nature Materials5/10 (2006) 797-801.
  • [211] J.A. Hunt, R. Chen, T. van Veen, N. Bryan, Hydro-gels for tissue engineering and regenerative medicine, Journal of Materials Chemistry B 2 (2014) 5319-5338.
  • [212] J. Guan, Y. Hong, Z.Ma, W.R. Wagner, Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability, Biomacromolecules 9/4 (2008) 1283-1292.
  • [213] S. Qin, Y. Geng, D.E. Discher, S. Yang, Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly(ethylene oxide)-block- poly(N-iso-propylacrylamide), Advanced Materials 18/21 (2006) 2905-2909.
  • [214] R. Liu, M. Fraylich, B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications, Colloid and Polymer Science 287 (2009) 627-643.
  • [215] S. Ohya, Y. Nakayama, T. Matsuda, In vivo evaluation of poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as an in situ-formable scaffold, Journal of Artificial Organs 7/4 (2004) 181-186.
  • [216] H. Tan, C.R. Chu, K.A.Payne, K.G. Marra, Injec-table in situ forming biodegradable chitosan–hyalu-ronic acid based hydrogels for cartilage tissue engi-neering, Biomaterials 30/13 (2009) 2499-2506.
  • [217] L.Q. Wang, K. Tu, Y. Li, J. Zhang, L. Jiang, Z. Zhang, Synthesis and characterization of temperature responsive graft copolymers of dextran with poly(N-iso-propylacrylamide), Reactive and Functional Polymers 53 (2002) 19-27.
  • [218] S.B. Lee, D.I. Ha, S.K. Cho, S.J. Kim, Y.M. Lee, Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacryl-amide), Journal of Applied Polymer Science 92/4 (2004) 2612-2620.
  • [219] B.K. Lau, Q.Q. Wang, W. Sun, L. Li, Micellization to Gelation of a Triblock Copolymer in Water: Thermo-reversibility and Scaling, Journal of Polymer Science Part B: Polymer Physics 42 (2004) 2014-2025.
  • [220] B. Jeong, Y.H. Bae, S.W. Kim, Thermoreversible Gelation of PEGíPLGAíPEG Triblock Copolymer Aqueous Solutions, Macromolecules 32/21 (1999) 7064-7069.
  • [221] C. Hiemstra, Z.Y. Zhong, L.B. Li, P.J. Dijkstra, J. Feijen, In-Situ Formation of Biodegradable Hydro-gels by Stereocomplexation of PEGí(PLLA)8and PEGí(PDLA)8Star Block Copolymers, Biomacro-molecules 7/10 (2006) 2790-2795.
  • [222] W.S. Shim, J.H. Kim, H. Park, K. Kim, I.C. Kwon, D.S. Lee, Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(İ-caprolactone-co-lactide)–poly(ethylene glycol)–poly(İ-caprolactone-co-lactide) block copolymer, Biomaterials 27/30 (2006) 5178-5185.
  • [223] C.Y. Gong, S.A. Shi, P.W.Dong, B. Kan, M.L. Gou, X.H. Wang, X.Y. Li, F. Luo, X. Zhao, Y.Q. Wei, Z.Y. Qian, Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel, International Journal of Pharmaceutics 365/1-2 (2009) 89-99.
  • [224] K. Park, H.H. Jung, J.S. Son, J.-W. Rhie, K.D. Park, K.-D. Ahn, D.K. Han, Thermosensitive and cell-adhesive pluronic hydrogels for human adipose-derived stem cells, Key Engineering Materials 342-343 (2007) 301-304.
  • [225] K. Kurata, A. Dobashi, Novel Temperature- and pH-Responsive Linear Polymers and Crosslinked Hydro-gels Comprised of Acidic L-Į-Amino Acid Deriva-tives, Journal of Macromolecular Science, Part A. Pure and Applied Chemistry 41/2 (2004) 143-164.
  • [226] K. Nagase, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, T. Okano, Preparation of thermorespon-sive cationic copolymer brush surfaces and application of the surface to separation of biomolecules, Biomacromolecules 9/4 (2008) 1340-1347.
  • [227] Y. Loo, S. Zhang, C.A.E. Hauser, From short peptides to nanofibers to macromolecular assemblies in biomedicine, Biotechnol Adv 30(3 (2012) 593-603.
  • [228] C. Xu, J. Kopecek, Self-assembling hydrogels, Poly-mer Bulletin 58 (2007) 53-63.
  • [229] S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnology 21/10 (2003) 1171-1178.
  • [230]S.A. Gabriel, C. Catherine, N.L. Krista, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp, Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers, Science 303/5662 (2004) 1352-1355.
  • [231] M.A. Bokhari, G. Akay, S. Zhang, M.A. Birch, The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material, Biomaterials 26/25 (2005) 5198-5208.
  • [232] R. Chen, J.A. Hunt, Biomimetic materials processing for tissue-engineering processes, Journal of Materials Chemistry 17/38 (2007) 3974-3979.
  • [233] H. Lihong, E.S. Read, S.P. Armes, D.J. Adams, Direct Synthesis of Controlled-Structure Primary Amine-Based Methacrylic Polymers by Living Radical Poly-merization, Macromolecules 40/13 (2007) 4429-4438.
  • [234] Q. Yu, F. Zeng, S. Zhu, Atom Transfer Radical Poly-merization of Poly(ethylene glycol) Dimethacrylate, Macromolecules 34/6 (2001) 1612-1618.
  • [235] J.A. Killion, L.M. Geever, D.M. Devine, L. Grehan, J.E. Kennedy, C.L. Higginbotham, Modulating the mechanical properties of photopolymerised poly-ethylene glycol–polypropylene glycol hydrogels for bone regeneration, Journal of Materials Science 47/18 (2012) 6577-6585.
  • [236] C. Ye, Z.H. Li, D. Li, C.Y. Gao, Fabrication and mineralization of poly(propylene fumarate)/hydroxy-apatite porous hydrogels, Acta Polymerica Sinica 10 (2012) 1143-1150.
  • [237]J.H. Hui, X. Ren, M.H. Afizah, K.S. Chian, A.G. Mikos, Oligo[poly(ethylene glycol)fumarate] Hydro-gel Enhances Osteochondral Repair in Porcine Femoral Condyle Defects, Clinical Orthopaedics 471/4 (2013) 1174-1185.
  • [238] J.S. Choi, H.S. Yoo, Pluronic/chitosan hydrogels con-taining epidermal growth factor with wound-adhesive and photo-crosslinkable properties, Journal of Biome-dical Materials Research PartA 95/2 (2010) 564-573.
  • [239] E.A. Kamoun, H. Menzel, Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light – Effect of con-centration, coinitiator type, and solvent, Journal of Applied Polymer Science 117/6 (2010) 3128-3138.
  • [240] S. Ibrahim, C.R. Kothapalli, Q.K. Kang, A. Rama-murthi, Characterization of glycidyl methacrylate – Crosslinked hyaluronan hydrogel scaffolds incorpo-rating elastogenic hyaluronan oligomers, Acta Bio-materialia 7/2 (2011) 653-665.
  • [241] A.D. Rouillard, C.M. Berglund, J.Y. Lee, W.J. Pola-check, Y. Tsui, L.J. Bonassar, B.J. Kirby, Methods for Photocrosslinking Alginate Hydrogels Scaffolds with High Cell Viability, Tissue Engineering Part C 17/2 (2011) 173-179.
  • [242] D.J. Overstreet, D. Dutta, S.E. Stabenfeldt, B.L. Ver-non, Injectable hydrogels, Journal of Polymer Science Part B: Polymer Physics 50/13 (2012) 881-903.
  • [243] M.P. Lütolf, G.P. Raeber, A.H. Zisch, T. Nicola, J.A. Hubell, Cell-Responsive Synthetic Hydrogels, Ad-vanced Materials 15/11 (2003) 888-892.
  • [244] X.Z. Shu, K. Ghosh, Y. Liu, F.S. Palumbo, Y. Luo, R.A. Clark, G.D. Prestwich, Attachment and sprea-ding of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel, Journal of Biomedical Materials Research Parta 68/2, (2004) 365-375.
  • [245] J. Maia, L. Ferreira, R. Carvalho, M.A. Ramos, M.H. Gil, Synthesis and characterization of new injectable and degradable dextran-based hydrogels, Polymer 46/23 (2005) 9604-9614.
  • [246] K.K. Nishi, A. Jayakrishnan, Preparation and in vitro evaluation of primaquine-conjugated gum arabic microspheres, Biomacromolecules 5/4 (2004) 1489-1495.
  • [247] D.A. Wang, S. Varghese, B. Shama, I. Strehin, S. Fermanian, J. Gorham, D.H. Fairbrother, B. Cascio, J.H. Elisseeff, Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration, Nature Materials 6/5 (2007) 385-392.
  • [248] J.J. Sperinde, L.G. Griffith, Control and prediction of gelation kinetics in enzymatically cross-linked poly-(ethylene glycol) hydrogels, Macromolecules 33/15 (2000) 5476-5480.
  • [249] B.J. Ryan, N. Carolan, C. O'Fagain, Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends in Biotechnology 24/8 (2006) 355-363.
  • [250] L.S. Moreira Teixeira, J. Feijen, C.A. van Blitters-wijk, P.J. Dijkstra, M. Karperien, Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering, Biomaterials 33/5 (2012) 1281-1290.
  • [251] R. Jin, L.S. Moreira Teixeira, P.J. Dijkstra, Z. Zhong, C.A. van Blitterswijk, M. Karperien, J. Feijen, Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering, Tissue Engineering Part A 16/8 (2010) 2429-2440.
  • [252]J.W.H. Wennink, K. Niederer, A.I. Bochyńska, L.S. Moreira Teixeira, M. Karperien, J. Feijen, P.J. Dijkstra, Injectable Hydrogels by Enzymatic Co-Cross-linking of Dextran and Hyaluronic Acid Tyramine Conjugates, Macromolecular Symposia 309-310/1 (2011) 213-221.
  • [253] S. Sakai, K. Kawakami, Both ionically and enzymatically crosslinkable alginate-tyramine conjugate as materials for cell encapsulation, Journal of Biome-dical Materials Research Part A 85/2 (2008) 345-351.
  • [254] S. Sakai, Y. Ogushi, K. Kawakami, Enzymatically crosslinked carboxymethylcellulose-tyramine conjugate hydrogel: cellular adhesiveness and feasibility for cell sheet technology, Acta Biomaterialia 5/2 (2009) 554-559.
  • [255] A.A. Amini, L.S. Nair, Enzymatically cross-linked injectable gelatin gel as osteoblast delivery vehicle, Journal of Bioactive and Compatible Polymers 27/4 (2012) 342-355.
  • [256] C. Fernandez, C.M. Hattan, R.J. Kerns, Semi-synthetic heparin derivatives: chemical modifications of heparin beyond chain length, sulfate substitution pattern and N-sulfo/N-acetyl groups, Carbohydrate Research 341/10 (2006) 1253-1265.
  • [257] K.M. Park, Y.M. Shin, Y.K. Joung, H. Shin, K.D. Park, In situ forming hydrogels based on tyramine conjugated 4-arm-PPO-PEO via enzymatic oxidative reaction, Biomacromolecules 11/3 (2010) 706-712.
  • [258] J.S. Patil, M.V. Kamalapur, S.C. Marapur, D.V. Ka-dam, Ionotropic gelation and polyelectrolyte complexation: the novel techniquesto design hydrogel par-ticulate sustained, modulated drug delivery system: A review, Digest Journal of Nanomaterials and Biostructures 5/1 (2010) 241-248.
  • [259] K.E. Crompton, J.D. Goud, R.V. Bellamkonda, T.R. Gengenbach, D.I. Finkelstein, M.K. Horne, J.S. For-sythe, Polylysine-functionalised thermoresponsive chitosan hydrogel for neuraltissue engineering, Bio-materials 28/3 (2007) 441-449.
  • [260] J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics 57/1 (2004) 19-34.
  • [261] J.K. Tessmar, A.M. Gopferich, Customized PEG-derived copolymers for tissue-engineering applications, Macromolecular Bioscience 7/1 (2007) 23-39.
  • [262] J. Baier Leach, K.A. Bivens, C.W. Patrick Jr., C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds, Biotechnology and Bioengineering 82/5 (2003) 578-589.
  • [263] J.L. Young, J. Tuler, R. Braden, P. Schüp-Magoffin, J. Schaefer, K. Kretchmer, K.L. Christman, A.J. En-gler, In vivo response todynamic hyaluronic acid hydrogels, Acta Biomaterialia 9/7 (2013) 7151-7157. [264] X.Z. Shu, Y. Liu, F.S. Palumbo, Y. Luo, G.D. Prestwich, In situ crosslinkable hyaluronan hydrogels for tissue engineering, Biomaterials 25/7-8 (2004) 1339-1348.
  • [265] N.N. Fathima, B. Madhan, J.R. Rao, B.U. Nair, T. Ramasami Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability, International Journal of Biological Macromolecules 34/4 (2004) 241-247.
  • [266] D. MacAya, K.K. Ng, M. Spector, Injectable Collagen Genipin Gel for the Treatment of Spinal Cord Injury: In Vitro Studies, Advanced Functional Materials 21/24 (2011) 4788-4797.
  • [267] Y.J. Hwang, J.G. Lyubovitsky, The structural analysis of three-dimensional fibrous collagen hydrogels by Raman microspectroscopy, Biopolymers 99/6 (2013) 349-356.
  • [268] J.B. Leach, K.A. Bivens, C.N. Collins, C.E. Schmidt, Development of photocrosslinkable hyaluronic acid-polyethylene glycol-peptide composite hydrogels for soft tissue engineering, Journal of Biomedical Materials Research Part A 70/1 (2004) 74-82.
  • [269] J. Berger, M. Reist, J.M.Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels for-med by complexation or aggregation for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics 57/1 (2004) 35-52.
  • [270] Y. Hong, H. Song, Y. Gong, Z. Mao, C. Gao, J. Shen, Covalently crosslinked chitosan hydrogel: Properties of in vitro degradation and chondrocyte encapsulation, Acta Biomaterialia 3/1 (2007) 23-31.
  • [271] A. Lahiji, A. Sohrabi, D.S. Hungerford, C.G. Frondoza, Chitosan supports the expression of extra-cellular matrix proteins in human osteoblasts and chondrocytes, Journal of Biomedical Materials Re-search 51/4 (2000) 586-595.
  • [272] R. Jin, C. Hiemstra, Z. Zhong, J. Feijen, Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates, Biomaterials 28/18 (2007) 2791-2800.
  • [273] J.M. Jukes, L.J. van der Aa, C. Hiemstra, T. van Veen, P.J. Dijkstra, Z.Y. Zhong, J. Feijen, A Newly Developed Chemically Crosslinked Dextran–Poly(Ethylene Glycol) Hydrogel for Cartilage Tissue Engineering, Tissue Engineering Part A 16/2 (2010) 565-573.
  • [274] A. Mosahebi, M. Simon, M. Wiberg, G. Terenghi, A novel use of alginate hydrogel as Schwann cell matrix, Tissue Engineering 7/5 (2001) 525-534.
  • [275] B.G. Ballios, M.J. Cooke, D. van der Kooy, M.S. Shoichet, A hydrogel-based stem cell delivery system to treat retinal degenerative diseases, Biomaterials 31/9 (2010) 2555-2564.
  • [276] U. Noth, K. Schupp, A. Heymer, S. Kall, F. Jakob, N. Schutze, B. Baumann, T. Barthel, J. Eulert, C. Hendrich, Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel, Cytotherapy 7/5 (2005) 447-455.
  • [277] J. Gao, R. Liu, J. Wu, Z. Liu, J. Li, J. Zhou, T. Hao, Y. Wang, Z. Du, C. Duan, C. Wang, The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury, Biomaterials 33/14 (2012) 3673-3681.
  • [278] S.L. Hume, S.M. Hoyt, J.S. Walker, B.V. Sridhar, J.F. Ashley, C.N. Bowman, S.J. Bryant, Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels, Acta Biomaterialia 8/6 (2012) 2193-2202.
  • [279] S. Shinohara, T. Kihara, S. Sakai, M. Matsusaki, M. Akashi, M. Taya, J. Miyake, Fabrication of in vitro three-dimensional multilayered blood vessel model using human endothelial and smooth muscle cells and high-strength PEG hydrogel, Journal of Bioscience and Bioengineering 116/2 (2013) 231-234.
  • [280] Y. Liu, M.B. Chan-Park, Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30/2 (2009) 196-207.
  • [281] T. Sawada, K. Tsukada, K. Hasegawa, Y. Ohashi, Y. Udagawa, V. Gomel, Cross-linked hyaluronate hydrogel prevents adhesion formation and refor-mation in mouse uterine horn model, Human Repro-duction 16/2 (2001) 353-356.
  • [282] Y. Yeo, C.B. Highley, E. Bellas, T. Ito, R. Marini, R. Langer, D.S. Kohane, In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model, Biomaterials 27/27 (2006) 4698-4705.
  • [283] D.L. Hern, J.A. Hubbell, Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing, Journal of Biomedical Materials Research 39/2 (1998) 266-276.
  • [284] J.A. Rowley, G. Madlambayan, D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20/1 (1999) 45-53.
  • [285] T. Kaneko, S. Tanaka, A. Ogura, M. Akashi, Tough, thin hydrogel membranes with giant crystalline do-mains composed of precisely synthesized macro-molecules, Macromolecules 38/11 (2005) 4861-4867.
  • [286] D.J. Odde, M.J. Renn, Laser-guided direct writing of living cells, Biotechnology and Bioengineering 67/3 (2000) 312-318.
  • [287] Y. Nahmias, R.E. Schwartz, C.M. Verfaillie, D.J. Odde, Laser-guided direct writing for threedimen-sional tissue engineering, Biotechnology and Bio-engineering 92/2 (2005) 129-136.
  • [288] V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, R. Markwald, Biofabrication: a 21st century manu-facturing paradigm, Biofabrication 1/2 (2009) 1-16.
  • [289] V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, Trends in Biotechnology 21/4 (2003) 157-161.
  • [290] T. Boland, V. Mironov, A. Gutowska, E.A. Roth, R.R. Markwald, Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels, The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 272/2 (2003) 497-502.
  • [291] R. Landers, R. Mülhaupt, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers, Macromolecular Materials and Engineering 282/1 (2000) 17-21.
  • [292] W. Tan, T.A. Desai, Layer-by-layer microfluidics for biomimetic three-dimensional structures, Biomaterials 25/7-8 (2004) 1355-1364.
  • [293] D.R. Albrecht, G.H. Underhill, T.B. Wassermann, R.L. Sah, S.N. Bhatia, Probing the role of multi-cellular organization in three-dimensional micro-environments, Nature Methods 3/5 (2006) 369-375. [294] S. Writers, Invetech helps bring bio-printers to life, Life Scientist, 2009, http://lifescientist.com.au/ content/biotechnology/news/invetech-helps-bring-bio-printers-to-life-413047968 .
  • [295] S. Bhatia, M. Birchall, et al., 3D-printed sugar network to help grow artificial liver, BBC, 2012, http://www.bbc.com/news/technology-18677627 .
  • [296] L.E. Bertassoni, M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A.L. Cristino, G. Barabaschi, D. Demarchi, M.R. Dokmeci, Y. Yang, A. Khadem-hosseini, Hydrogel bioprintedmicrochannel networks for vascularization of tissue engineering constructs, Lab on a Chip 14/13(2014) 2202-2211.
  • [297] T.A. Campbell, R. Reid et al., 3D Printing: Challenges and Opportunities for International Relations, Transcript, Council on Foreign Relations, CFR.org, 2013, http://www.cfr.org/technology-and-science/3d-printing-challenges-opportunities-international-relatio ns/-p31709 .
  • [298] J.T. Quigley, Chinese Scientists Are 3D Printing Ears and Livers – With Living Tissue, Tech Biz, The Diplomat, 2013, http://thediplomat.com/2013/08/-chinese-scientists-are-3d-printing-ears-and-livers-with-living-tissue/.
  • [299] How do they 3D print kidney in China, 3Ders.org, 2013, http://www.3ders.org/articles/20130815-how-do-they-3d-print-kidney-in-china.html.
  • [300]M. Littre, Humans could be fitted with kidneys made on 3D PRINTERS thanks to Australian researchers who have already grown miniature organs in labs, by K. Lyons, DailyMailOnline, 2014, http://www.daily mail.co.uk/sciencetech/article-2637158/Humans-fitte d-kidneys-3D-printers.html.
  • [301] J. Hoying et al., New 3D bioprinter to reproduce human organs, change the face of healthcare: The inside story, by L. Gilpin, TechRepublic, 2014, http://www.techrepublic.com/article/new-3d-bioprin ter-to-reproduce-human-organs/.
  • [302] D. Lambrick, World Artificial Organs Market by 2017, Market and Markets, 2014, http://www.power show.com/view0/608c4e-YjNiM/World_Artificial_ Organs_Market_by_2017_powerpoint_ppt_presentation.
  • [303] Medical Bionic Implant (Artificial Organs) Market - (Vision Bionics/Bionic Eye, Brain Bionics, Heart Bionics/Artificial Heart, Orthopedic Bionics and Ear Bionics) – Trends and Global Forecasts to 2017, Markets and Markets, 2012, http://www.marketsand markets.com/Market-Reports/medical-bionic-implant -market-908.html.
  • [304] Orthopedic Trauma Fixation Devices Market - Global Forecast, Market Share, Size, Growth and Industry Analysis 2014 - 2020, Transparency Market Research, 2014, http://www.transparencymarket research.com/orthopedic-trauma-fixation-device-mar ket.html.
  • [305] Orthopedic Soft Tissue Repair Market (Surgical Procedures - ACL/PCL Reconstruction, Meniscal Repair, Rotator Cuff Repair, Hip Arthroscopy, Biceps Tenodesis and Shoulder Labrum Repair) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019, Transparency Market Research, 2014, http://www.transparency marketresearch.com/soft-tissue-repair-sports-medicine.html.
  • [306] 3D Printing in Medical Applications Market (Medical Implants (Dental, Orthopedic, Cranio-maxillofacial), Surgical Guides, Surgical Instruments, Bio-engineered Products) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019, Transparency Market Research, 2014, http://www.transparencymarketresearch.com/3d-Printing-medical-applications.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12b05a47-cc11-432e-b7d6-2c420fb778e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.