Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The current research represents a pilot study for application of the Perpendicular Vegetation Index (PVI) for an area with forests in Bulgaria. It is the first of its kind when it comes to forest studying in the country to the best knowledge of the author. When it comes to soil background Landsat images and other spectral data may be used for monitoring forest territories as well. The study area is Pernik Province which is located in the western parts of Bulgaria. The main aim is to investigate the PVI for the forests of Pernik Province. The index has been calculated by the application of Landsat 8 bands. The PVI has been processed for several months of different years. The main focus is both on the beginning and the end of the growing season when there are significant changes in leaf biomass. The results are promising and show typical vegetation features in the beginning of the growing season (April), a well-developed vegetation (July) and a steadily decreasing biomass in November.
Czasopismo
Rocznik
Tom
Strony
96--104
Opis fizyczny
Bibliogr. 16 poz., mapy
Twórcy
autor
- Sofia University “St. Kliment Ohridski”
Bibliografia
- 1. Chrysafis, I, Mallinis, G, Siachalou, S and Patias, P 2017. Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letters 8 (6), 508-517. DOI: 10.1080/2150704X.2017.1295479
- 2. Cusack, D, Silver, W and McDowell, W 2009. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization. Ecosystems 12, 1299-1315.
- 3. Dobrowski, S, Ustin, S and Wolpert, J 2008. Remote estimation of vine canopy density in vertically shoot-positioned vineyards: determining optimal vegetation indices. ASVO, 8 (2), 117-125.
- 4. Edwards, D, Tobias, J, Sheil, D, Meijaard, E and Laurance, W 2014. Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29 (9), 511-520. https://doi.org/10.1016/j.tree.2014.07.003.
- 5. Gamfeldt, L, Snäll, T, Bagchi, R et al. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4, 1340.
- 6. Jinguo, Y and Wei, W 2004. Identification of Forest Vegetation Using Vegetation Indices. Chinese Journal of Population Resources and Environment, 2 (4), 12-16.
- 7. Kamenova, I and Dimitrov, P 2021. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. European Journal of Remote Sensing, 54 sup1, 89-108. DOI: 10.1080/22797254.2020.1839359.
- 8. Kamenova, I, Dimitrov, P and Yordanova, R 2018. Evaluation of RapydEye vegetation indices for prediction of biophysical/biochemical variables of winter wheat. Aerospase research in Bulgaria, 30. https://doi.org/10.3897/arb.v30.e06.
- 9. Lourençoni, T, da Silva Junior, C, Lima, M et al., 2021. Advance of soy commodity in the southern Amazonia with deforestation via PRODES and ImazonGeo: a moratorium-based approach. Sci Rep 11, 21792. https://doi.org/10.1038/s41598-021-01350-y
- 10. McDonald, A, Gemmell, F and Lewis, P 1998. Investigation of the Utility of Spectral Vegetation Indices for Determining Information on Coniferous Forests. Remote Sensing of Environment, 66 (3), 250-272.
- 11. Pal, S, Chakrabortty, R, Malik, S et al., 2018. Application of forest canopy density model for forest cover mapping using LISS-IV satellite data: a case study of Sali watershed, West Bengal. Model. Earth Syst. Environ. 4, 853-865, doi.org/10.1007/s40808-018-0445-x
- 12. Richardson, A and Wiegand, C 1977. Distinguishing Vegetation from Soil Background Information. Photogrammetric Engineering and Remote Sensing, 43 (12), 1541-1552.
- 13. Trong, H, Nguyen, T and Kappas, M 2020. Land Cover and Forest Type Classification by Values of Vegetation Indices and Forest Structure of Tropical Lowland Forests in Central Vietnam. International Journal of Forestry Research, 8896310, 18 pages. doi.org/10.1155/2020/8896310
- 14. USGS EarthExplorer - https://earthexplorer.usgs.gov/
- 15. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
- 16. https://pro.arcgis.com/en/pro-app/latest/arcpy/image-analyst/pvi.htm
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12aebd4c-ac78-4b0e-a066-dc92bf196dbc