PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized grid structures for the characteristic diagram based estimation of thermo-elastic tool center point displacements in machine tools

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is a well-known problem of milling machines, that waste heat from motors, friction effects on guides and also the milling process itself greatly affect the positioning accuracy and thus the production quality. An economic and energy-efficient method of correcting this thermo-elastic positioning error is to gather sensor data from the machine tool and the process and to use that information to predict and correct the resulting tool center point displacement using high dimensional characteristic diagrams. The size of these characteristic diagrams depends on the number of input variables (sensors) and the fineness of the discretization of the grid. While the number of sensors can usually not be reduced without affecting the quality of the prediction, it is often possible to minimize the size of characteristic diagrams through the use of adaptive grid refinement. This ensures that the finest grid sections correspond with the load cases that have the largest local gradients. Through such adaptive refinement, it is possible to reduce storage capacity and computation time without significant loss of precision. The aim of this article is to examine, test and compare different methods of adaptive grid refinement. For this, simulation data from a machine tool is used.
Rocznik
Strony
36--50
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany
  • Dresden University of Technology TUD, Dresden, Germany
autor
  • Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany
autor
  • Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany
Bibliografia
  • [1] BRYAN J., 1990, International status of thermal error research, CIRP Annals – Manufacturing Technology, 39/2, 645-656.
  • [2] GROSSMANN K. et al., 2015, Thermo-energetic design of machine tools, Lecture Notes in Production Engineering, Springer.
  • [3] IHLENFELDT S., KAUSCHINGER B., NAUMANN C., PUTZ M., THIEM X., RIEDEL M., 2016, Implementation and demonstration of characteristic diagram as well as structure model based correction of thermo-elastic tool center point displacements, Journal of Machine Engineering, 16/3, 88-101.
  • [4] HERZOG R., RIEDEL I., 2015, Sequentially optimal sensor placement in thermo-elastic models for real time applications, Optimization and Engineering, 1-30.
  • [5] SAAD Y., 2003, Iterative methods for sparse linear systems, 2nd Edition, Society for Industrial and Applied Mathematics.
  • [6] IHLENFELDT S., NAUMANN C., PRIBER U., RIEDEL I., 2015, Characteristic diagram based correction algorithms for the thermo-elastic deformation of machine tools, Proceedings 48th CIRP Conference on Manufacturing Systems.
  • [7] NAUMANN C., PRIBER U., 2012, Modellierung des Thermo-Elastischen Verhaltens von Werkzeugmaschinen mittels Hochdimensionaler Kennfelder, Proceedings Workshop Computational Intelligence.
  • [8] PRIBER U., 2003, Smoothed grid regression, Proceedings Workshop Fuzzy Systems.
  • [9] CHATFIELD C., COLLINS A.J., 1980, Introduction to multivariate analysis, Springer US, 57-81.
  • [10] CHERNYSHENKO A.Y., OLSHANSKII M.A., 2014, An adaptive octree finite element method for PDEs on surfaces, arXiv,1408.3891v1.
  • [11] BURGANTZ H.J., GRIEBEL M., 2004, Sparse Grids, Acta Numerica 13 147-269.
  • [12] PFLUEGER D., 2010, Spatially adaptive sparse grids for high-dimensional problems, Dissertation, TU Munich.
  • [13] CHEN L., ZHANG C., 2010, A Coarsening algorithm on adaptive grids by newest vertex bisection and its applications, IEEE Journal of Computational Mathematics, 28, 1-23.
  • [14] MAO S., SHI Z.-C., ZHAO X., 2010, Adaptive quadrilateral and hexahedral finite element methods with hanging nodes and convergence analysis, In: Journal of Computational Mathematics, 28/5, 621-644.
  • [15] BENNER P., LANG N., SAAK J., 2015, Model order reduction for thermo-elastic assembly group models, In: Thermo-Energetic Design of Machine Tools, Lecture Notes in Production Engineering, Springer, 85-93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12ae371b-4fd1-461c-aa7a-c49d370032e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.