Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, the use of the interior permanent magnet synchronous machine (IPMSM) in various applications has grown significantly due to numerous benefits. Sensors are used to achieve high efficiency and good dynamic response in IPMSM drives but due to their high cost and reduced overall size of the system, sensorless control techniques are preferred. Non-sinusoidal distribution of rotor flux and slot harmonics are present in the considered IPMSM. In this article, these problems are considered control system disturbances. With the above-mentioned problems, the classical observer structure based on (d-q) fails to estimate at low-speed ranges. This article proposes an observer structure based on a rotor flux vector in (α-β) stationary reference frame, which works using the adaptive control law to estimate speed and position, and a non-adaptive EEMF-based observer to estimate speed and position. Moreover, a comparative analysis between both observer structures at different speed ranges is also considered in this article. The effectiveness of the observer structure is validated by simulation tests and experimental tests using the sensorless control system with a field-oriented control scheme for a 3.5 kW IPMSM drive system.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e150327
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering and EkoTech Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering and EkoTech Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering and EkoTech Center, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives – A review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, Jul. 2020, doi: 10.1109/TIE.2019.2955409.
- [2] C. Ogbuka, C. Nwosu, and M. Agu, “Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets,” Arch. Electr. Eng., vol. 65, no. 1, pp. 105–116, Mar. 2016, doi: 10.1515/aee-2016-0008.
- [3] A. Młot, M. Korkosz, A. Lechowicz, J. Podhajecki, and S. Rawicki, “Electromagnetic analysis, efficiency map and thermal analysis of an 80-kW IPM motor with distributed and concentrated winding for electric vehicle applications,” Arch. Electr. Eng., vol. 71, no. 4, pp. 981–1002, 2022, doi: 10.24425/aee.2022.142120.
- [4] A. Mlot, M. Kowol, J. Kolodziej, A. Lechowicz, and P. Skrobotowicz, “Analysis of IPM motor parameters in an 80-kW traction motor,” Arch. Electr. Eng., vol. 69, no. 2, pp. 467–481, 2020, doi: 10.24425/aee.2020.133038.
- [5] S. Brock and T. Pajchrowski, “Sensorless and energy-efficient PMSM drive for fan application,” Arch. Electr. Eng., Jun. 2013, pp. 217–225. doi: 10.2478/aee-2013-0017.
- [6] H. Qiu, Y. Zhang, C. Yang, and R. Yi, “Influence of the number of turns on the performance of permanent magnet synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 3, pp. 429–436, Jun. 2020, doi: 10.24425/bpasts.2020.133375.
- [7] R. Ryndzionek, K. Blecharz, F. Kutt, M. Michna, and G. Kostro, “Fault-Tolerant Performance of theNovel Five-Phase Doubly-Fed Induction Generator,” IEEE Access, vol. 10, pp. 59350–59358, 2022, doi: 10.1109/ACCESS.2022.3179815.
- [8] Y. Li, H. Hu, and P. Shi, “A Review of Position Sensorless Compound Control for PMSM Drives,” World Electr. Veh. J., vol. 14, no. 2, p. 34, 2023. doi: 10.3390/wevj14020034.
- [9] M. Tang, C. Wang, and Y. Luo, “Predictive current control for permanent magnet synchronous motor based on internal model control observer,” Arch. Electr. Eng., vol. 71, no. 2, pp. 343–362, 2022, doi: 10.24425/aee.2022.140715.
- [10] S. Navaneethan, S. Kanthalakshmi, and S. Aandrew Baggio, “Lyapunov stability based sliding mode observer for sensorless control of permanent magnet synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140353, 2022, doi: 10.24425/bpasts.2022.140353.
- [11] M. Morawiec, A. Lewicki, and C. Odeh, “Rotor-Flux Vector based Observer of Interior Permanent Synchronous Machine,” IEEE Trans. Ind. Electron., vol. 71, no.2, pp. 1399–1409, 2024, doi: 10.1109/TIE.2023.3250851.
- [12] J. Choi, K. Nam, A.A. Bobtsov, and R. Ortega, “Sensorless Control of IPMSM Based on Regression Model,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 9191–9201, Sep. 2019, doi: 10.1109/TPEL.2018.2883303.
- [13] M.P. Kazmierkowski and H. Tunia, Automatic Control of Converter-Fed Drives. Amsterdam, London, New York, Tokyo, Warsaw: Elsevier, 1994, pp. 37–68.
- [14] A. T. Woldegiorgis, X. Ge, H. Wang, and M. Hassan, “A New Frequency Adaptive Second-Order Disturbance Observer for Sensorless Vector Control of Interior Permanent Magnet Synchronous Motor,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 11847–11857, Dec. 2021, doi: 10.1109/TIE.2020.3047065.
- [15] T. Zhang, Z. Xu, J. Li, H. Zhang, and C. Gerada, “A third order super-twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5948–5958, Jul. 2020, doi: 10.1109/TIE.2019.2959498.
- [16] Z. Xu, T. Zhang, Y. Bao, H. Zhang, and C. Gerada, “A nonlinear extended state observer for rotor position and speed estimation for sensorless IPMSM Drives,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 733–743, Jan. 2020, doi: 10.1109/TPEL.2019.2914119.
- [17] A. T. Woldegiorgis, X. Ge, S. Li, and M. Hassan, “Extended Sliding Mode Disturbance Observer-Based Sensorless Control of IPMSM for Medium and High-Speed Range Considering Railway Application,” IEEE Access, vol. 7, pp. 175302–175312, 2019, doi: 10.1109/ACCESS.2019.2957274.
- [18] D. Xiao, S. Nalakath, Y. Sun, J. Wiseman, and A. Emadi, “Complex-coefficient adaptive disturbance observer for position estimation of IPMSMs with robustness to DC Errors,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5924–5935, Jul. 2020, doi: 10.1109/TIE.2019.2941157.
- [19] Y. Zhang, Z. Yin, C. Bai, G. Wang, and J. Liu, “A Rotor Position and Speed Estimation Method Using an Improved Linear Extended State Observer for IPMSM Sensorless Drives,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 14062–14073, Dec. 2021, doi: 10.1109/TPEL.2021.3085126.
- [20] I. Boldea, M.C. Paicu, and G.D. Andreescu, “Active flux concept for motion-sensorless unified AC drives,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2612–2618, 2008, doi: 10.1109/TPEL.2008.2002394.
- [21] I. Boldea, M.C. Paicu, G.D. Andreescu, and F. Blaabjerg, “‘Active Flux’ DTFC-SVM sensorless control of IPMSM,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 314–322, 2009, doi: 10.1109/TEC.2009.2016137.
- [22] K. Urbanski, “Determining the observer parameters for back EMF estimation for selected types of electrical motors,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 4, pp. 439–447, Aug. 2017, doi: 10.1515/bpasts-2017-0049.
- [23] J. Yang, M. Dou, and D. Zhao, “Iterative sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 845–857, 2017, doi: 10.1515/bpasts-2017-0092.
- [24] Y. Zhao, W. Qiao, and L. Wu, “Improved Rotor Position and Speed Estimators for Sensorless Control of Interior Permanent-Magnet Synchronous Machines,” IEEE J. Emerg. Sel. Top Power Electron., vol. 2, no. 3, pp. 627–639, Jan. 2014, doi: 10.1109/jestpe.2014.2298433.
- [25] A. Glumineau, J. De, and L. Morales, Sensorless AC Electric Motor Control Robust Advanced Design Techniques and Applications – Advances in Industrial Control. Springer Cham, 2015, doi: 10.1007/978-3-319-14586-0.
- [26] R. Krishnan, Permanent magnet synchronous and brushless DC motor drives. CRC Press/Taylor & Francis, 2010.
- [27] G. Wang, G. Zhang, and D. Xu, Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives. Springer, 2020.
- [28] M. Morawiec and K. Blecharz, “Non-adaptive Speed and Position Estimation of Doubly-Fed Induction Generator in Grid-Connected Operations,” IEEE Trans. Ind. Electron., vol. 71, no.2, pp. 3617–3627, 2024, doi: 10.1109/TIE.2023.3279548.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12a97a05-ea7e-48bf-bdae-0f86e379cea3