Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of additions of silver or titanium (0.5 or 3 vol.%) microparticles on the microstructure, as well as some physical properties of Al2O3-based composites, were studied. The processing method for the manufacturing of alumina-based composites was a combination of RBAO and SPS processes. After the SPS process, bodies with almost full density were obtained. Observations by optical microscopy show a very fine and homogenous microstructure in all samples. Concerning mechanical properties, the addition of metals on alumina increases its fracture toughness significantly (112% for the sample with additions of silver, while the composite with additions of titanium fracture toughness increases by 72%). In terms of optical properties, both silver and titanium improve the absorbance in the visible range.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--255
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., wzory
Twórcy
autor
- Universidad Politécnica de Victoria, Ciudad Victoria, México
autor
- Universidad Politécnica de Victoria, Ciudad Victoria, México
autor
- Universidad Politécnica de Victoria, Ciudad Victoria, México
autor
- Universidad Politécnica de Victoria, Ciudad Victoria, México
Bibliografia
- [1] A. Shakeel, K. Suvardhan: Handbook of Bionanocomposites, Pan Stanford Publishing Ltd (2018).
- [2] M. Szafran, K. Konopka, E. Bobryk, K.J. Kurzydłowski, J. Eur. Ceram. Soc. 27, 651-654 (2007). DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.04.046
- [3] C. Liu, J. Zhang, J. Sun, X. Zhang, Ceram. Int. 33, 1319-1324 (2007). DOI: https://doi.org/10.1016/j.ceramint.2006.04.014
- [4] E. Rocha-Rangel, J. López-Hernández, C.A. Calles-Arriaga, W.J. Pech-Rodríguez, E.N. Armendáriz-Mireles, J.A. Castillo-Robles, J.A. Rodríguez-García, J. Mater. Res. 34, 1-7 (2019). DOI: https://doi.org/10.1557/jmr.2019.178
- [5] Y.N. Li, W.Z. Zhang, Y.F. Cao, T.E. Zhang, Ad. Mater. Res. 853, 68-72 (2013). DOI: https://doi.org/10.4028/www.scientific.net/AMR.853.68
- [6] C. Marci, P. Katarzyna, J. Eur. Ceram. Soc. 27, 1273-1277 (2007). DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.05.093
- [7] K. Wonbaek, O. Hyun-Su, S. In-Jin, Int. J. Refract. H. Met. 48, 376-381 (2015). DOI: https://doi.org/10.1016/j.ijrmhm.2014.10.011
- [8] S.T. Alweendo, O.T. Johnson, B.M. Shongwe, F.P. Kavishe, J.O. Borode, Mat. Res. 23, 1-9 (2020). DOI: https://doi.org/10.1590/1980-5373-mr-2019-0363
- [9] O.L. Ighodaro, O.I. Okoli, Int. J. Appl. Ceram. Technol. 313-323 (2008). DOI: https://doi.org/10.1111/j.1744-7402.2008.02224.x
- [10] P. Agrawal, C.T. Sun, Compos. Sci. Technol. 64, 1167-1178 (2004). DOI: https://doi.org/10.1016/j.compscitech.2003.09.026
- [11] A.N. Winter, B.A. Corff, I.E. Reimanis, B.H. Rabin, J. Amer. Ceram. Soc. 83, 2147-2154 (2000). DOI: https://doi.org/10.1111/J.1151-2916.2000.TB01528.X
- [12] K. Konopka, M. Szafran, J. Mater. Proc. Technol. 175, 266-270 (2006). DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.046
- [13] K. Davis, Material review: Alumina (Al2O3). School of Doctoral Studies (European Union) Journal 109-113 (2010).
- [14] P.O. Guglielmi, D.E. Garcıa, M.P. Hablitzel, D. Blaese, D.P. Goulart, A. Borchert, R. Janssen, J. Ceram. Sci. Technol. 7, 87-96 (2016). DOI: https://doi.org/10.4416/JCST2015-00038
- [15] N. Claussen, S. Wu, D. Holz, J. Eur. Ceram. Soc. 14, 97-109 (1994). DOI: https://doi.org/10.1016/0955-2219(94)90097-3
- [16] H.K. Lee, Korean J. Mater. Res. 23, 574-579 (2013). DOI: http://dx.doi.org/10.3740/MRSK.2013.23.10.574
- [17] H.K. Lee, HK, Korean J. Mater. Res. 25, 215-220 (2015). DOI: http://dx.doi.org/10.3740/MRSK.2015.25.5.215
- [18] B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Scr. Mater. 57, 607-610 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2007.06.009
- [19] A. Teber, F. Schoenstein, F. Têtard, M. Abdellaoui, N. Jouini, Int. J. Refract. H. Met. 30, 64-70 (2012). DOI: https://doi.org/10.1016/j.ijrmhm.2011.06.013
- [20] S.J. Esparza-Vázquez, ScM thesis, Reinforcement of alumina-based ceramics (Al₂O₃) with titanium (Ti) nanoparticles, Politechnic University of Victory, México (2014).
- [21] A. Pérez-de la Fuente, Alumina-Silver Composites Manufacturing, Politechnic University of Victory, México (2015).
- [22] ASTM: Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. C20-00 (2010).
- [23] ASTM standard test method for dynamic Young’s modulus, Shear modulus, and Poisson’s ratio for advanced ceramics by sonic resonance. C1198-09 (2013).
- [24] ASTM standard test method for Vickers indentation hardness of advanced ceramics. C1327 (2015).
- [25] T. Miyoshi, N. Sagawa, T. Sassa, T. Jpn. Soc. Mech. Eng. Ser. A51, 2489-2497 (1985). DOI: https://doi.org/10.1299/kikaia.51.2489
- [26] V. Ðorđević, D.N. Sredojević, J. Dostanić, D. Lončarević, S.P. Ahrenkiel, N. Švrakić, E. Brothers, M. Belić, J.M. Nedeljković, Micropor. Mesopor. Mat. 273, 41-49 (2019). DOI: https://doi.org/10.1016/j.micromeso.2018.06.053
- [27] H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, Nano Energy. 22, 223-231 (2016). DOI: https://doi.org/10.1016/j.nanoen.2016.02.025
- [28] R.E. Hummel, Electrical Properties of Materials. In: Understanding Materials Science. Springer, New York, NY (1998). DOI: https://doi.org/10.1007/978-1-4757-2972-6_11
Uwagi
1. The authors are grateful to the Department of Mechanical Engineering, Toyohashi University of Technology, Japan for the facilities given to develop the present work.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12a0f535-9c78-4e42-b7b9-b5ec52fccc63