Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hydrogen has been identified as an essential component of a decarbonized and sustainable energy system. The use of hydrogen is associated with the problem of its storage and distribution. Storing hydrogen in the gaseous state is energy-consuming, mainly due to the process of its compression. A much higher density of hydrogen can be obtained after its liquefaction. Hydrogen can also bond in chemical compounds, for example, in ammonia which contains 17.8% hydrogen by weight. The aim of the work was to examine the ammonia decomposition process in the plasma-catalytic system and to determine the effect of the process parameters on energy consumption. The applied catalysts allowed higher ammonia conversion than the homogeneous system. The lowest energy consumption, 593 kJ/molH2, was obtained for the 10% Fe/Al2O3 catalyst. The highest ammonia conversion (approx. 90%) was obtained using the 10% Co/Al2O3 catalyst.
Rocznik
Tom
Strony
art. no. e67
Opis fizyczny
Bibliogr. 35 poz., wykr., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
Bibliografia
- 1. Acar C., Dincer I., 2020. The potential role of hydrogen as a sustainable transportation fuel to combat global waring. Int. J. Hydrogen Energy, 45, 3396–3406. DOI: 10.1016/j.ijhydene.2018.10.149.
- 2. Akiyama M., Aihara K., Sawaguchi T., Matsukata M., Iwamoto M., 2018. Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma. Int. J. Hydrogen Energy, 43, 14493–14497. DOI: 10.1016/j.ijhydene.2018.06.022.
- 3. Aziz M., Wijayanta A.T., Nandiyanto A.B.D., 2020. Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energies, 13, 3062. DOI: 10.3390/en13123062.
- 4. Bell T.E., Torrente-Murciano L., 2016. H2 Production via ammonia decomposition using non-noble metal catalysts: a review. Top. Catal., 59, 15–16. DOI: 10.17863/CAM.835.
- 5. Chapman A., Itaoka K., Hirose K., Davidson F.T., Nagasawa K., Lloyd A.C., Webber M.E., Kurban Z., Managi S., Tamaki T., Lewis M.C., Hebner R.E., Fujii Y., 2019. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. Int. J. Hydrogen Energy, 44, 6371–6382. DOI: 10.1016/j.ijhydene.2019.01.168.
- 6. Chiuta S., Everson R.C., Neomagus H.W.J.P., van der Gryp P., Bessarabov D.G., 2013. Reactor technology options for distributed hydrogen generation via ammonia decomposition: a review. Int. J. Hydrogen Energy, 38, 14968–14991. DOI: 10.1016/ j.ijhydene.2013.09.067.
- 7. Dawood F., Anda M., Shafiullah G.M., 2020. Hydrogen production for energy: an overview. Int. J. Hydrogen Energy, 45, 3847–3869. DOI: 10.1016/j.ijhydene.2019.12.059.
- 8. Edwards P.P., Kuznetsov V.L., David W.I.F., 2007. Hydrogen energy. Philos. Trans. R. Soc. A, 365, 1043–1056. DOI: 10.1098/rsta.2006.1965.
- 9. El-Shafie M., Kambara S., Hayakawa Y., 2020. Alumina particle size effect on H2 production from ammonia decomposition by DBD plasma. Energy Rep., 6, 25–30. DOI: 10.1016/j.egyr.2020.10.032.
- 10. Esily R.R., Chi Y., Ibrahiem D.M., Chen Y., 2022. Hydrogen strategy in decarbonization era: Egypt as a case study. Int. J. Hydrogen Energy, 47, 18629–18647. DOI: 10.1016/j.ijhydene. 2022.04.012.
- 11. Fateev A., Leipold F., Kusano Y., Stenum B., Tsakadze E., Bindslev H., 2005. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasma Process. Polym., 2, 193–200. DOI: 10.1002/ppap.200400051.
- 12. Hayakawa Y., Kambara S., Miura T., 2020. Hydrogen production from ammonia by the plasma membrane reactor. Int. J. Hydrogen Energy, 45, 32082–32088. DOI: 10.1016/ j.ijhydene.2020.08.178.
- 13. Huang C., Yu Y., Yang J., Yan Y., Wang D., Hu F., Wang X., Zhang R., Feng G., 2019. Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Appl. Surf. Sci., 476, 928–936. DOI: 10.1016/j.apsusc.2019.01.112.
- 14. Ertl R., 1991. Elementary steps in ammonia synthesis, In: Jennings J.R. (Ed.), Catalytic ammonia synthesis. Fundamentals and practice. Springer, Boston, MA, 109–132. DOI: 10.1007/978-1- 4757-9592-9_3.
- 15. Kalamaras C.M., Efstathiou A.M., 2013. Hydrogen production technologies: Current state and future developments: Conference Papers in Science, 690627. DOI: 10.1155/2013/690627.
- 16. Li X.-K., Ji W.-J., Zhao J., Wang S.-J., Au C.-T., 2005. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal., 236, 181–189. DOI: 10.1016/j.jcat.2005.09.030.
- 17. Lin Q.F., Jiang Y.M., Liu C.Z., Chen L.W., Zhang W.J., Ding J., Li J.G., 2021. Instantaneous hydrogen production from ammonia by non-thermal arc plasma combining with catalyst. Energy Rep., 7, 4064–4070. DOI: 10.1016/j.egyr.2021.06.087.
- 18. Młotek M., Perron M., Krawczyk K., 2021. Ammonia decomposition in a gliding discharge plasma. Energy Technol., 9, 2100677. DOI: 10.1002/ente.202100677.
- 19. Morlanés N., Katikaneni S.P., Paglieri S.N., Harale A., Solami B., Sarathy S.M., Gascon J., 2021. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem. Eng. J., 408, 127310. DOI: 10.1016/j.cej.2020.127310.
- 20. Niaz S., Manzoor T., Pandith A.H., 2015. Hydrogen storage: materials, methods, and pperspectives. Renewable Sustainable Energy Rev., 50, 457–469. DOI: 10.1016/j.rser.2015.05.011.
- 21. Parra D., Valverde L., Pino F.J., Patel M.K., 2019. A review on the role, cost and value of hydrogen energy systems for deep decarbonization. Renewable Sustainable Energy Rev., 101, 279–294. DOI: 10.1016/j.rser.2018.11.010.
- 22. Qiu H., Martus K., Lee W.Y., Becker K., 2004. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures. Int. J. Mass Spectrom., 233, 19–24. DOI: 10.1016/j.ijms.2003.08.017.
- 23. Rusman N.A.A., Dahari M., 2016. A review on the current progress of metal hydride material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy, 41, 12108–12126. DOI: 10.1016/j.ijhydene.2016.05.244.
- 24. Schneemann A., White J.L., Kang S., Jeong S., Wan L.F., Cho E.S., Heo T.W., Prendergast D., Urban J.J., Wood B.C., Allendorf M.D., Stavila V., 2018. Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev., 118, 10775–10839. DOI: 10.1021/acs.chemrev.8b00313.
- 25. Schüth F., Palkovits R., Schlögl R., Su D.S., 2012. Ammonia as a possible element in energy infrastructure: catalysts for ammonia decomposition. Energy Environ. Sci., 5, 6278–6289. DOI: 10.1039/c2ee02865d.
- 26. Su Q., Gu L.L., Zhong A.H., Yao Y., Ji W.J., Ding W.P., Au C.T., 2018. Layered double hydroxide derived Mg2Al-LDO supported and K-modified Ru catalyst for hydrogen production via ammonia decomposition. Catal. Lett., 148, 894–903. DOI: 10.1007/s10562-017-2195-1.
- 27. Tabassum H., Mukherjee S., Chen J., Holiharimanana D., Karakalos S., Yang X., Hwang S., Zhang T., Lu B., Chen M., Tang Z.,
- 28. Kyriakidou E.A., Ge Q., Wu G., 2022. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru – free catalysts: approaching complete conversion at 450 o C. Energy Environ. Sci., 15, 4190–4200. DOI: 10.1039/D1EE03730G.
- 29. Uddin M.N., Nageshkar V.V., Asmatulu R., 2020. Improving water-splitting efficiency of water electrolysis process via highly conductive nanomaterials at lower voltages. Energy Ecol. Environ., 5, 108–117. DOI: 10.1007/s40974-020-00147-5.
- 30. Varisli D., Kaykac N.G., 2016. Hydrogen from ammonia over cobalt incorporated silicate structured catalysts prepared using different cobalt salts. Int. J. Hydrogen Energy, 41, 5955–5968. DOI: 10.1016/j.ijhydene.2016.02.097.
- 31. Wan Z., Tao Y., Shao J., Zhang Y., You H., 2021. Ammonia as an effective hydrogen Carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manage., 228, 113729. DOI: 10.1016/j.enconman.2020.113729.
- 32. Wang Z., Qu Y., Shen X., Cai Z., 2019. Ruthenium catalyst supported on Ba modified ZrO2 for ammonia decomposition to COx -free hydrogen. Int. J. Hydrogen Energy, 44, 7300–7307. DOI: 10.1016/j.ijhydene.2019.01.235.
- 33. Yin S.F., Xu B.Q., Zhou X.P., Au C.T., 2004. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal., A: Gen., 277, 1–9. DOI: 10.1016/J.APCATA.2004.09.020.
- 34. Zhang H., Zhu Y., Liu Q., Li X., 2022. Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage. Appl. Energy, 306, 118131. DOI: 10.1016/j.apenergy. 2021.118131.
- 35. Zhao Y., Wang L., Zhang J., Gong W., Guo H., 2013. Decom- position of ammonia by atmospheric pressure AC discharge: catalytic effect of the electrodes. Catal. Today, 211, 72–77. DOI: 10.1016/j.cattod.2013.03.027
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-129ef79c-1b35-4340-bb52-7d9a7368736f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.