PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Double Layered Priority based Gray Wolf Algorithm (PrGWO-SK) for safety management in IoT network through anomaly detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For mitigating and managing risk failures due to Internet of Things (IoT) attacks, many Machine Learning (ML) and Deep Learning (DL) solutions have been used to detect attacks but mostly suffer from the problem of high dimensionality. The problem is even more acute for resource starved IoT nodes to work with high dimension data. Motivated by this problem, in the present work a priority based Gray Wolf Optimizer is proposed for effectively reducing the input feature vector of the dataset. At each iteration all the wolves leverage the relative importance of their leader wolves’ position vector for updating their own positions. Also, a new inclusive fitness function is hereby proposed which incorporates all the important quality metrics along with the accuracy measure. In a first, SVM is used to initialize the proposed PrGWO population and kNN is used as the fitness wrapper technique. The proposed approach is tested on NSL-KDD, DS2OS and BoTIoT datasets and the best accuracies are found to be 99.60%, 99.71% and 99.97% with number of features as 12,6 and 9 respectively which are better than most of the existing algorithms.
Rocznik
Strony
641--654
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Guru Gobind Singh Indraprastha University, Dept of Computer Science and Engg., Ambedkar Institute of Advanced Communication Technologies and Research (now NSUT-E), Geeta Colony, Delhi-110031, India
autor
  • Guru Gobind Singh Indraprastha University, Dept of Computer Science and Engg., Ambedkar Institute of Advanced Communication Technologies and Research (now NSUT-E), Geeta Colony, Delhi-110031, India
Bibliografia
  • 1. Alazzam H, Sharieh A, Sabri KE. A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer. Expert systems with applications 2020; 148: 113249, https://doi.org/10.1016/j.eswa.2020.113249.
  • 2. Almiani M, AbuGhazleh A, Al-Rahayfeh A, Atiewi S, Razaque A. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory 2020; 101: 102031, https://doi.org/10.1016/j.simpat.2019.102031.
  • 3. Antunes Rodrigues J, Torres Farinha J, Mendes M, Mateus R, Marques Cardoso A. Short and long forecast to implement predictive maintenance in a pulp industry. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(1): 33–41, http://doi.org/10.17531/ein.2022.1.5.
  • 4. Baranowski J. Predicting IoT failures with Bayesian workflow. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (2): 248–259, http://doi.org/10.17531/ein.2022.2.6.
  • 5. Emary E, Zawbaa HM, Hassanien AE. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016; 172: 371-381, https://doi.org/10.1016/j.neucom.2015.06.083.
  • 6. Gao H, Qiu B, Barroso RJ, Hussain W, Xu Y, Wang X. TSMAE: a novel anomaly detection approach for internet of things time series data using memory-augmented autoencoder. IEEE Transactions on Network Science and Engineering(Early Access) 2022: 1, https://doi.org/10.1109/TNSE.2022.3163144.
  • 7. Gao X, Shan C, Hu C, Niu Z, Liu Z. An adaptive ensemble machine learning model for intrusion detection. IEEE Access 2019; 7: 82512-82521, https://doi.org/10.1109/ACCESS.2019.2923640.
  • 8. Golrang A, Golrang AM, Yildirim Yayilgan S, Elezaj O. A novel hybrid IDS based on modified NSGAII-ANN and random forest. Electronics 2020; 9(4): 577, https://doi.org/10.3390/electronics9040577.
  • 9. Gu J, Lu S. An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Computers & Security 2021; 103: 102158, https://doi.org/10.1016/j.cose.2020.102158.
  • 10. Gu J, Wang L, Wang H, Wang S. A novel approach to intrusion detection using SVM ensemble with feature augmentation. Computers & Security 2019; 86: 53-62, https://doi.org/10.1016/j.cose.2019.05.022.
  • 11. Hasan M, Islam MM, Zarif MI, Hashem MM. Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things 2019; 7: 100059, https://doi.org/10.1016/j.iot.2019.100059.
  • 12. Hodo E, Bellekens X, Hamilton A, Dubouilh PL, Iorkyase E, Tachtatzis C, Atkinson R. Threat analysis of IoT networks using artificial neural network intrusion detection system. 2016 IEEE International Symposium on Networks, Computers and Communications (ISNCC), Hammamet, IEEE 2016: 1-6, https://doi.org/10.1109/ISNCC.2016.7746067.
  • 13. Hoz ED, Hoz ED, Ortiz A, Ortega J, Martínez-Álvarez A. Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowledge Based Systems 2014; 71: 322-338, https://doi.org/10.1016/j.knosys.2014.08.013.
  • 14. Hoz ED, Ortiz A, Ortega J, Hoz ED. Network anomaly classification by support vector classifiers ensemble and non-linear projection techniques. 2013 International Conference on Hybrid Artificial Intelligence Systems, Berlin, Springer 2013: 103-111, https://doi.org/10.1007/978-3-642-40846-5_11.
  • 15. Ippoliti D, Zhou X. An adaptive growing hierarchical self organizing map for network intrusion detection. 2010 IEEE 19th International Conference on Computer Communications and Networks, Zurich, IEEE 2010: 1-7, https://doi.org/10.1109/ICCCN.2010.5560165.
  • 16. Kayacik HG, Zincir-Heywood AN, Heywood MI. A hierarchical SOM-based intrusion detection system. Engineering applications of artificial intelligence 2007; 20(4): 439-51, https://doi.org/10.1016/j.engappai.2006.09.005.
  • 17. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-Iot dataset. Future Generation Computer Systems 2019; 100: 779-796, https://doi.org/10.1016/j.future.2019.05.041.
  • 18. Kumar P, Gupta GP, Tripathi R. Toward design of an intelligent cyber attack detection system using hybrid feature reduced approach for iot networks. Arabian Journal for Science and Engineering 2021; 46(4): 3749-3778, https://doi.org/10.1007/s13369-020-05181-3.
  • 19. Kunhare N, Tiwari R, Dhar J. Particle swarm optimization and feature selection for intrusion detection system. Sādhanā 2020; 45(1): 1-4, https://doi.org/10.1007/s12046-020-1308-5.
  • 20. Mahfouz AM, Venugopal D, Shiva SG. Comparative analysis of ML classifiers for network intrusion detection. 2020 4th International Congress on Information and Communication Technology, Singapore, Springer 2020: 193-207, https://doi.org/10.1007/978-981-32-9343-4_16.
  • 21. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software 2014; 69: 46-61, https://doi.org/10.1016/j.advengsoft.2013.12.007.
  • 22. Modi C, Patel D. A feasible approach to intrusion detection in virtual network layer of Cloud computing. Sādhanā 2018; 43(7): 1-6, https://doi.org/10.1007/s12046-018-0910-2.
  • 23. Pahl MO, Aubet FX. DS2OS traffic traces . [https://www.kaggle.com/francoisxa/ds2ostraffictraces].
  • 24. Pahl MO, Aubet FX, Liebald S. Graph-based IoT microservice security. 2018 IEEE/IFIP Network Operations and Management Symposium(NOMS), Taipei, IEEE 2018: 1-3, https://doi.org/10.1109/NOMS.2018.8406118.
  • 25. Pajouh HH, Dastghaibyfard G, Hashemi S. Two-tier network anomaly detection model: a machine learning approach. Journal of Intelligent Information Systems 2017; 48(1): 61-74, https://doi.org/10.1007/s10844-015-0388-x.
  • 26. Pajouh HH, Javidan R, Khayami R, Dehghantanha A, Choo KK. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing 2016; 7(2): 314-23, https://doi.org/10.1109/TETC.2016.2633228.
  • 27. Rathore S, Park JH. Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing 2018; 72: 79-89, https://doi.org/10.1016/j.asoc.2018.05.049.
  • 28. Safaldin M, Otair M, Abualigah L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing 2021; 12(2): 1559-76, https://doi.org/10.1007/s12652-020-02228-z.
  • 29. Shafiq M, Tian Z, Sun Y, Du X, Guizani M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Generation Computer Systems 2020; 107: 433-42, https://doi.org/10.1016/j.future.2020.02.017.
  • 30. Shams EA, Rizaner A, Ulusoy AH. Trust aware support vector machine intrusion detection and prevention system in vehicular adhoc networks. Computers & Security 2018; 78: 245-254, https://doi.org/10.1016/j.cose.2018.06.008
  • 31. Shone N, Ngoc TN, Phai VD, Shi Q. A deep learning approach to network intrusion detection. IEEE transactions on Emerging topics in Computational Intelligence 2018; 2(1): 41-50, https://doi.org/10.1109/TETCI.2017.2772792.
  • 32. Sivapalan G, Nundy KK, Dev S, Cardiff B, John D. ANNet: a lightweight neural network for ECG anomaly detection in IoT edge sensors. IEEE Transactions on Biomedical Circuits and Systems 2022; 16(1): 24-35, https://doi.org/10.1109/TBCAS.2021.3137646.
  • 33. Soe YN, Feng Y, Santosa PI, Hartanto R, Sakurai K. Towards a lightweight detection system for cyber attacks in the IoT environment using corresponding features. Electronics 2020; 9(1): 144, https://doi.org/10.3390/electronics9010144.
  • 34. Su T, Sun H, Zhu J, Wang S, Li Y. BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset. IEEE Access 2020; 8: 29575-29585, https://doi.org/10.1109/ACCESS.2020.2972627.
  • 35. Tama BA, Comuzzi M, Rhee KH. TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 2019; 7: 94497-94507, https://doi.org/10.1109/ACCESS.2019.2928048.
  • 36. Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the KDD CUP 99 data set. 2009 IEEE symposium on Computational Intelligence for Security and Defense Applications, Ottawa, IEEE 2009: 1-6, https://doi.org/10.1109/CISDA.2009.5356528.
  • 37. Tavallaee M, Bagheri E, Lu W, Ghorbani AA. The NSL-KDD data set. [https://www.unb.ca/cic/datasets/nsl.html].
  • 38. Teng S, Wu N, Zhu H, Teng L, Zhang W. SVM-DT-based adaptive and collaborative intrusion detection. IEEE/CAA Journal of Automatica Sinica 2017; 5(1): 108-18, https://doi.org/10.1109/JAS.2017.7510730.
  • 39. Tian Q, Han D, Li KC, Liu X, Duan L, Castiglione A. An intrusion detection approach based on improved deep belief network. Applied Intelligence 2020; 50(10): 3162-3178, https://doi.org/10.1007/s10489-020-01694-4.
  • 40. Vijayanand R, Devaraj D, Kannapiran B. Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection. Computers & Security 2018; 77: 304-314, https://doi.org/10.1016/j.cose.2018.04.010.
  • 41. Wei W, Chen S, Lin Q, Ji J, Chen J. A multi-objective immune algorithm for intrusion feature selection. Applied Soft Computing 2020; 95:106522, https://doi.org/10.1016/j.asoc.2020.106522.
  • 42. Wisanwanichthan T, Thammawichai M. A Double-Layered Hybrid Approach for Network Intrusion Detection System Using Combined Naive Bayes and SVM. IEEE Access 2021; 9: 138432-138450, https://doi.org/10.1109/ACCESS.2021.3118573.
  • 43. Wu K, Chen Z, Li W. A novel intrusion detection model for a massive network using convolutional neural networks. IEEE Access 2018; 6: 50850-50859, https://doi.org/10.1109/ACCESS.2018.2868993.
  • 44. Yang Y, Zheng K, Wu C, Niu X, Yang Y. Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks. Applied Sciences 2019; 9(2): 238, https://doi.org/10.3390/app9020238.
  • 45. Yao H, Wang Q, Wang L, Zhang P, Li M, Liu Y. An intrusion detection framework based on hybrid multi-level data mining. International Journal of Parallel Programming 2019; 47(4): 740-758, https://doi.org/10.1007/s10766-017-0537-7.
  • 46. Yu Z, Tsai JJ, Weigert T. An adaptive automatically tuning intrusion detection system. ACM Transactions on Autonomous and Adaptive Systems 2008; 3(3): 1-25, https://doi.org/10.1145/1380422.1380425.
  • 47. Zhang C, Ruan F, Yin L, Chen X, Zhai L, Liu F. A deep learning approach for network intrusion detection based on NSL-KDD dataset. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, IEEE 2019: 41-45, https://doi.org/10.1109/ICASID.2019.8925239.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-129eb254-7069-4f91-9890-7c47ba7c5ca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.