PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive machine learning and deep learning approaches for Parkinson's disease classification and severity assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompleksowe metody uczenia maszynowego i uczenia głębokiego do klasyfikacji choroby Parkinsona i oceny jej nasilenia
Języki publikacji
EN
Abstrakty
EN
In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.
PL
W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny ciężkości choroby Parkinsona.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
  • Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology, Rabat, Morocco
autor
  • Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology, Rabat, Morocco
  • Mohammed V University in Rabat, National School of Arts and Crafts, Electronic Systems Sensors and Nanobiotechnology, Rabat, Morocco
Bibliografia
  • [1] Abunadi I.: Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer's disease. Connect. Sci. 34, 2022, 2395–2430.
  • [2] Balaji E. et al.: Automatic and non-invasive Parkinson's disease diagnosis and severity rating using LSTM network. Applied Soft Computing 108, 2021, 107463.
  • [3] Benba A., Jilbab A., Et Hammouch A.: Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson's disease and healthy people. International Journal of Speech Technology 19, 2016, 449-456.
  • [4] Bourdenx M. et al.: Identification of distinct pathological signatures induced by patient-derived ?-synuclein structures in nonhuman primates. Science advances 6(20), 2020, eaaz9165.
  • [5] Chaudhuri K. R., Schapira A. H.: Non-motor symptoms of Parkinson's disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 2009, 464–474.
  • [6] El Bakali S., Ouadi H., Saad G.: Day-ahead seasonal solar radiation prediction, combining VMD and STACK algorithms. Clean Energy 7(4) (2023), 911–925.
  • [7] Erdogdu Sakar B., Serbes G., Sakar C. O.: Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease. PLoS ONE 12(8), 2017, e0182428.
  • [8] Gelly G.: Reseaux de neurones recurrents pour le traitement automatique de la parole. Ph.D. thesis, Université Paris Saclay (COmUE), Paris 2017.
  • [9] Gheouany S. et al.: Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties. Energy Conversion and Management 291, 2023, 117309.
  • [10] Grover S., Bhartia S., Yadav A., Seeja K.: Predicting severity of Parkinson's disease using deep learning. Procedia Comput. Sci. 132, 2018, 1788-1794.
  • [11] Guo R. et al.: Degradation state recognition of piston pump based on ICEEMDAN and XGBoost. Applied Sciences 10(18), 2020, 6593.
  • [12] Gupta I. et al.: PCA-RF: an efficient Parkinson's disease prediction model based on random forest classification. 2022, arXiv preprint arXiv:2203.11287.
  • [13] Gürüler H.: A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Computing & Applications 28(7), 2017, 1657-1666.
  • [14] Kumar A. et al.: A new Diagnosis using a Parkinson's Disease XGBoost and CNN-based classification model Using ML Techniques. International Conference on Advanced Computing Technologies and Applications – ICACTA. Coimbatore 2022, 1–6.
  • [15] Little M., McSharry P., Hunter E., Spielman J., Ramig L.: Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. Nat. Preced. 2008.
  • [16] Majdoubi O., Benba A., Hammouch A.: Classification of Parkinson's disease and other neurological disorders using voice features extraction and reduction techniques. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 13(3), 2023, 16-22.
  • [17] Poewe W., Seppi K., Tanner C., Halliday G., Brundin P., Volkmann J., Schrag A., Lang A.: Parkinson disease. Nat. Rev. Dis. Prim. 3, 2017, 17013.
  • [18] Prakash P., Sebban M., Habrard A., Barthelemy J.-C., Roche F., Pichot V.: Détection automatique des apnées du sommeil sur l'ECG nocturne par un apprentissage profond en réseau de neurones récurrents (RNN). Médecine du Sommeil 18(1), 2021, 43-44.
  • [19] Quan C., Ren K., Luo Z., Chen Z., Ling Y.: End-to-end deep learning approach for Parkinson's disease detection from speech signals. Biocybern. Biomed. Eng. 42, 2022, 556-574.
  • [20] Rehman A. et al.: Parkinson's disease detection using hybrid lstm-gru deep learning model. Electronics 12(13), 2023, 2856.
  • [21] Sharanyaa S., Renjith P. N., Ramesh K.: An exploration on feature extraction and classification techniques for dysphonic speech disorder in Parkinson's Disease. Inventive Communication and Computational Technologies – ICICCT. Singapore, 2022.
  • [22] Sriram T. V. S., Rao M. V., Narayana G. V. S., Kaladhar D. S. V. G. K.: Diagnosis of Parkinson disease using machine learning and data mining systems from voice dataset. 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications – FICTA. Berlin, 2014, 151–157.
  • [23] Tallapureddy G., Radha D.: Analysis of Ensemble of Machine Learning Algorithms for Detection of Parkinson's Disease. International Conference on Applied Artificial Intelligence and Computing – ICAAIC. Salem, 2022, 354–361.
  • [24] Yasar A., Saritas I., Sahman M., Cinar A.: Classification of Parkinson disease data with artificial neural networks. IOP Conf. Ser. Mater. Sci. Eng. 675, 2019, 012031.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-129e27e0-43f0-4f3e-a685-f9f614a7574f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.