PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical simulation of temperature distribution in a gun barrel based on the DPL model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an exact closed form solution is introduced for the heat conduction equation in cylindrical coordinates under consecutive inner time dependent surface heat flux by both the Fourier and dual-phase-lag (DPL) models. The solution is used to calculate the temperature distribution in a gun barrel subjected to single and consecutive shoots, and the results are compared with literature. The parametrical study is done using the analytical solution to show the effect of shooting frequency which leads to different heat power from each fire shoot and temperature distribution. The result shows good ability of analytical solution for estimation of temperature distribution in the gun barrel, especially under consecutive shoots in which unexpected incidents such as barrel melting is so probable. The closed form solution can be applied for verification of other numerical works in this area.
Rocznik
Strony
685--696
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
  • School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • 1. Afrin N., Zhang Y., Chen J., 2014, Dual-phase lag behavior of a gas-saturated porous-medium heated by a short-pulsed laser, International Journal of Thermal Sciences, 75, 21-27
  • 2. Akbarzadeh A., Chen Z., 2012, Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory, International Journal of Thermophysics, 33, 6, 1100-1125
  • 3. Atefi G., Talaee M.R., 2011, Non-Fourier temperature field in a solid homogeneous finite hollow cylinder, Archive of Applied Mechanics, 81, 5, 569-583
  • 4. Cattaneo C., 1958, A form of heat-conduction equations which eliminates the paradox of instantaneous propagation, Comptes Rendus, 247, 431
  • 5. Chandrasekharaiah D., 1998, Hyperbolic thermoelasticity: a review of recent literature, Applied Mechanics Reviews, 51, 12, 705-729
  • 6. Chen T.-C., Liu C.-C., Jang H.-Y., Tuan P.-C., 2007, Inverse estimation of heat flux and temperature in multi-layer gun barrel, International Journal of Heat and Mass Transfer, 50, 11-12, 2060-2068
  • 7. Chen T.-C., Liu C.-C., 2008, Inverse estimation of time-varied heat flux and temperature on 2-D gun barrel using input estimation method with finite-element scheme, Defence Science Journal, 58, 1, 57
  • 8. Dębski A., Koniorczyk P., Leciejewski Z., Preiskorn M., Surma Z., Zmywaczyk J., 2016, Analysis of heat transfer in a 35 mm barrel of an anti-aircraft cannon, Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 7, 3, 71-86
  • 9. Ghazanfarian J., Abbassi A., 2009, Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction, International Journal of Heat and Mass Transfer, 52, 15-16, 3706-3711
  • 10. Ghazanfarian J., Abbassi A., 2012, Investigation of 2D transient heat transfer under the effect of dual-phase-lag model in a nanoscale geometry, International Journal of Thermophysics, 33, 3, 552-566
  • 11. Ghazanfarian J., Shomali Z., 2012, Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor, International Journal of Heat and Mass Transfer, 55, 21-22, 6231-6237
  • 12. Gheitaghy A., Talaee M., 2013, Solving hyperbolic heat conduction using electrical simulation, Journal of Mechanical Science and Technology, 27, 12, 3885-3891
  • 13. Han P., Tang D., Zhou L., 2006, Numerical analysis of two-dimensional lagging thermal behavior under short-pulse-laser heating on surface, International Journal of Engineering Science, 44, 20, 1510-1519
  • 14. Hill R.D., Conner J.M., 2012, Transient heat transfer model of machine gun barrels, Materials and Manufacturing Processes, 27, 8, 840-845
  • 15. Lawton B., 2001, Thermo-chemical erosion in gun barrels, Wear, 251, 1-12, 827-838
  • 16. Lee H.-L., Yang Y.-C., Chang W.-J., Wu T.-S., 2009, Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance, Applied Mathematics and Computation, 209, 2, 211-221
  • 17. Liu K.-C., Chen H.-T., 2010, Investigation for the dual phase lag behavior of bio-heat transfer, International Journal of Thermal Sciences, 49, 7, 1138-1146
  • 18. Malter L., Langmuir D., 1939, Resistance, emissivities and melting point of tantalum, Physical Review, 55, 8, 743
  • 19. Mishra A., Hameed A., Lawton B., 2010, A novel scheme for computing gun barrel temperature history and its experimental validation, Journal of Pressure Vessel Technology, 132, 6, 061202
  • 20. Mishra S.C., Sahai H., 2012, Analyses of non-Fourier heat conduction in 1-D cylindrical and spherical geometry – an application of the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 55, 23-24, 7015-7023
  • 21. Saedodin S., Barforoush M., 2017, An exact solution for thermal analysis of a cylindrical object using hyperbolic thermal conduction model, Thermophysics and Aeromechanics, 24, 6, 909-920
  • 22. Seiler F., Mathieu G., Peter H., Zimmermann K., 2003, Experimental and numerical estimation of gun barrel heating for rapid fire, WIT Transactions on Modelling and Simulation, 33
  • 23. Talaee M.R., Alizadeh M., Bakhshandeh S., 2014, An exact analytical solution of non- -Fourier thermal stress in cylindrical shell under periodic boundary condition, Engineering Solid Mechanics, 2, 4, 293-302
  • 24. Talaee M.R., Atefi G., 2011, Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux, Archive of Applied Mechanics, 81, 12, 1793-1806
  • 25. Talaee M.R., Kabiri A., 2017a, Analytical solution of hyperbolic bioheat equation in spherical coordinates applied in radiofrequency heating, Journal of Mechanics in Medicine and Biology, 17, 4, 1750072
  • 26. Talaee M.R., Kabiri A., 2017b, Exact analytical solution of bioheat equation subjected to intensive moving heat source, Journal of Mechanics in Medicine and Biology, 17, 5, 1750081
  • 27. Talaee M.R., Kabiri A., Khodarahmi R., 2018, Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42, 3, 269-277
  • 28. Talaee M.R., Sarafrazi V., 2017, Analytical solution for three-dimensional hyperbolic heat conduction equation with time-dependent and distributed heat source, Journal of Mechanics, 33, 1, 65-75
  • 29. Talaee M.R., Sarafrazi V., Bakhshandeh S., 2016, Exact analytical hyperbolic temperature profile in a three-dimensional media under pulse surface heat flux, Journal of Mechanics, 32, 3, 339-347
  • 30. Torabi M., Saedodin S., 2011, Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates, Journal of Thermophysics and Heat Transfer, 25, 2, 239-253
  • 31. Torabi M., Zhang K., 2014, Multi-dimensional dual-phase-lag heat conduction in cylindrical coordinates: Analytical and numerical solutions, International Journal of Heat and Mass Transfer, 78, 960-966
  • 32. Tzou D.Y., 1995, The generalized lagging response in small-scale and high-rate heating, International Journal of Heat and Mass Transfer, 38, 17, 3231-3240
  • 33. Tzou D.Y., 1997, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, DC
  • 34. Underwood J., Vigilante G., Mulligan C., 2007, Review of thermo-mechanical cracking and wear mechanisms in large caliber guns, Wear, 263, 7-12, 1616-1621
  • 35. Vernotte P., 1961, Some possible complications in the phenomena of thermal conduction, Compte Rendus, 252, 2190-2191
  • 36. Wu B., Chen G., Xia W., 2008, Heat transfer in a 155 mm compound gun barrel with full length integral midwall cooling channels, Applied Thermal Engineering, 28, 8-9, 881-888
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-129cfd9f-96a8-4f19-8450-8620eb9f6369
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.