PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of the selected parameters on the effectiveness of IGCC system integrated with CCS installation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the basic input data and modelling results of IGCC system with membrane CO2 capture installation and without capture. The models were built using commercial software (Aspen and GateCycle) and with the use of authors’ own computational codes. The main parameters of the systems were calculated, such as gross and net power, auxiliary power of individual installations and efficiencies. The models were used for the economic and ecological analysis of the systems. The Break Even Point method of analysis was used. The calculations took into account the EU emissions trading scheme. Sensitivity analysis on the influence of selected quantities on break-even price of electricity was performed.
Rocznik
Strony
233--248
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, ul. Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • 1. Badyda K., Kupecki J., Milewski J., 2010. Modelling of integrated gasification hybrid power systems. Rynek Energii, 88, 47-92.
  • 2. Bartela Ł., Kotowicz J., 2011. Analiza pracy turbiny gazowej pracującej w układzie IGCC. Rynek Energii, 95, 16-22.
  • 3. Bartela Ł., Skorek-Osikowska A., Kotowicz J., 2014. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation. Energy, 64, 513-523. DOI: 10.1016/j.energy.2013.11.048
  • 4. Bartela Ł., Skorek-Osikowska A., Kotowicz A., 2014. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation. Energy Convers. Manage., in press. DOI: 10.1016/j.enconman.2014.02.018.
  • 5. Chmielniak T., 2011. Rola różnych rodzajów technologii w osiągnięciu celów emisyjnych w perspektywie do 2050. Rynek Energii, 92, 3-9.
  • 6. Cormos C.C., 2012. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy, 42, 434-445. DOI: 10.1016/j.energy.2012.03.025.
  • 7. Descamps C., Bouallou C., Kanniche M., 2008. Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy, 33, 874-881. DOI: 10.1016/j.energy.2007.07.013.
  • 8. Desideri U., Paolucci A., 1999. Performance modelling of a carbon dioxide removal system for power plants. Energy Convers. Manage., 40, 1899-1915. DOI: 10.1016/S0196-8904(99)00074-6.
  • 9. Feron P.H.M., 2009. The potential for improvement of the energy performance of pulverized coal fired power stations with post-combustion capture of carbon dioxide. Energy Procedia, 1, 1067-1074. DOI: 10.1016/j.egypro.2009.01.141.
  • 10. General Electric, 2009. 9F syngas turbine. High efficiency syngas-based power generation. Fact Sheet, General Electric, available at: www.ge-energy.com/products_and_services/products/gasification/syngas_turbine.jsp
  • 11. Grainger D., Hägg M.B., 2008. Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture. Fuel, 87, 14-24. DOI: 10.1016/j.fuel.2007.03.042.
  • 12. Huang Y., Rezvani S., Mcilveen-Wright D., Minchener A., Hewitt N., 2008. Techno-economic study of CO2 capture and storage in coal fired oxygen fed entrained flow IGCC power plants. Fuel Process. Technol., 89, 916-925. DOI: 10.1016/j.fuproc.2008.03.002.
  • 13. Kawabata M., Kurata O., Iki N., Tsutsumi A., Furutani H., 2012. Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation – Technical challenges for future generations. J. Power Technologies, 92(2), 90-100.
  • 14. Kotowicz J., 2009. Elektrownie gazowo-parowe. Wydawnictwo Kaprint. Lublin.
  • 15. Kotowicz J., Bartela Ł., 2012. Optimisation of the connection of membrane CCS installation with a supercritical coal- fired power plant. Energy, 38, 118-127. DOI: 10.1016/j.energy.2011.12.028.
  • 16. Kotowicz J., Chmielniak T., Janusz-Szymańska K., 2010. The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy, 35, 841-850. DOI: 10.1016/j.energy.2009.08.008.
  • 17. Kotowicz J., Janusz-Szymańska K., 2010. The influence of CO2 membrane separation on the operating characteristics of a coal-fired power plant. Chem. Process Eng., 31, 681-697.
  • 18. Kotowicz J., Skorek-Osikowska A., Bartela Ł., 2011. Economic and environmental evaluation of selected advanced power generation technologies. J. Power Energy, 225, 221-232. DOI: 10.1177/2041296710394280.
  • 19. Kotowicz J., Skorek-Osikowska A., Janusz-Szymańska K., 2010. Membrane separation of carbon dioxide in the integrated gasification combined cycle systems. Archives of Thermodynamics, 31, 145-164. DOI: 10.2478/v10173-010-0020-y.
  • 20. Malko J., 2011. Ekonomika technologii CCS. Rynek Energii, 95, 43-46.
  • 21. Maurstad O., 2005. An overview of coal based integrated gasification combined cycle (IGCC) technology.
  • 22. Massachusetts Institute of Technology, Publication no. LFEE 2005–002 WP, available at: http://sequestration.mit.edu/pdf/LFEE_2005-002_WP.pdf.
  • 23. Melchior T., Madlener R., 2012. Economic evaluation of IGCC plants with hot gas cleaning. Appl. Energy, 97, 170-185. DOI: 10.1016/j.apenergy.2012.02.065.
  • 24. Skorek J., Kalina J., 2005. Gazowe układy kogeneracyjne. Wydawnictwa Naukowo-Techniczne Warszawa.
  • 25. Skorek-Osikowska A, Kotowicz J, Janusz-Szymańska K., 2012. Comparison of the energy intensity of the selected CO2-capture methods applied in the ultrasupercritical coal power plants. Energy Fuels, 26, 6509–6517. DOI: 10.1021/ef201687d.
  • 26. Skorek-Osikowska A., Janusz-Szymańska K., Kotowicz J., 2012. Modeling and analysis of selected carbon dioxide capture methods in IGCC systems. Energy, 45, 92–100. DOI:10.1016/j.energy.2012.02.002.
  • 27. Skorek-Osikowska A. Bartela Ł., Kotowicz J., Job M., 2013. Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Convers. Manage., 76, 109-120. DOI: 10.1016/j.enconman.2013.07.032
  • 28. Skorek-Osikowska A, Bartela Ł, Kotowicz J, Sobolewski A, Iluk T. Remiorz L., 2014. The influence of the size of the CHP system integrated with a biomass fuelled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation. Energy, 67, 328-340. DOI: 10.1016/j.energy.2014.01.015.
  • 29. Smitha V.N., Kirkpatrick R.D., Young B.R., 2008. Gasification of New Zealand coals: A comparative simulation study. Energy Fuels, 22, 2687-2692. DOI: 10.1021/ef700704n.
  • 30. Sun B., Liu Y., Xi Ch., Qulan Z., Ming S., 2011. Dynamic modeling and simulation of Shell gasifier in IGCC. Fuel Process. Technol., 92, 1418-1425. DOI: 10.1016/j.fuproc.2011.02.017.
  • 31. Ściążko M., Zapart L., Dreszer K., 2006. Analiza efektywności zgazowania węgla połączonego z usuwaniem ditlenku węgla. Polityka energetyczna 9, Zeszyt specjalny.
  • 32. Toftegaard M.B., Brix J., Jensen P.A., Glarborg P., Jensen A.D., 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci., 36, 581–625. DOI: 10.1016/j.pecs.2010.02.001
  • 33. Wójcik K., Chmielniak T., 2010. Wychwyt i transport CO2 ze spalin – efekty energetyczne i analiza ekonomiczna. Rynek Energii, 91, 51-55.
  • 34. Zhao L., Menzer R., Riensche E., Blum L., Stolten D., 2009. Concepts and investment cost analyses of Multistage membrane systems used in post-combustion processes. Energy Procedia 1, 269-278. DOI: 10.1016/j.egypro.2009.01.038.
  • 35. Zheng L, Furinsky E., 2005. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations. Energy Convers. Manage., 46, 1767-1779. DOI: 10.1016/j.enconman.2004.09.004.
  • 36. Zheng L., 2011. Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Woodhead Publishing Limited.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-128ec735-2c71-4a58-a99d-f8b31485129d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.