PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure dissolution features in Oxfordian microbial-sponge buildups with pseudonodular texture, Kraków Upland, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Part of the Oxfordian carbonate buildups in the southern part of the Kraków Upland is developed as pseudonodular limestones, which represent segment reefs. These limestones are composed of connected, rounded-oval to subangular carbonate pseudonodules. The pseudonodules, densely packed within the limestone, fall out easily under mechanical stress. The recently observed texture of pseudonodular limestones resulted from two stages of chemical compaction. During the first stage, in the Late Jurassic, high-amplitude and low-amplitude stylolites and dissolution seams were formed. The sites particularly favourable for the development of high-amplitude stylolites were the boundaries between already lithified fragments of the laminar, rigid microbial-sponge framework. The low-amplitude stylolites formed mainly in the intercalated wackestone-packstone, which was lithified somewhat later; hence, the dissolution seams originated at the contacts between the rigid microbial-sponge framework and the wackestonepackstone. After Early Cretaceous erosion, which decreased the burial load, Late Cretaceous sedimentation enabled the renewal of pressure dissolution. Thus, some low-amplitude stylolites evolved into dissolution seams. In stylolites composed of both low- and high-amplitude segments, dissolution proceeded at the bases of interpenetrating high-amplitude stylolite columns, with the simultaneous transformation of low-amplitude stylolite segments into dissolution seams. These seams, which formed at the initial stage of chemical compaction, were subjected in turn to further pressure dissolution, giving rise to the formation of horsetail structures. The vertical stress field, which triggered the pressure dissolution processes, presumably resulted in the formation of high-angle and vertical incipient tension gashes. At the beginning of the processes, these gashes remained closed. In the Cenozoic, under the extensional regime generated by overthrusting Carpathian flysch nappes, some high-angle and vertical dissolution seams and low-amplitude stylolites opened up, forming deformed dissolution seams and deformed stylolites. Under the same conditions, the high-angle and vertical tension gashes opened up as well. Subsequently, during the exposure period, unloading fractures developed, partly as a result of the opening of some subhorizontal and horizontal dissolution seams and stylolites. The unloading fractures, along with the already existing vertical and high-angle tension gashes, formed the network changing the limestone into pseudonodules of various shapes and sizes. The open spaces between the limestone fragments became local conduits for karst waters.
Rocznik
Strony
355--377
Opis fizyczny
Bibliogr. 96 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, al. Mickiewicza 30; 30-059 Kraków, Poland
Bibliografia
  • 1. Aharonov, E. & Katsman, R., 2009. Interaction between pressure solution and clays in stylolite development: Insights from modelling. American Journal of Science, 309: 607-632.
  • 2. Alsharhan, A. S. & Sadd, J. L., 2000. Stylolites in Lower Cretaceous carbonate reservoirs, U.A.E. Society for Sedimentary Geology, Special Publication, 69: 185-207.
  • 3. Alvarez, W., Engelder, T. & Lowrie, W., 1976. Formation of spaced cleavage and folds in brittle limestone by dissolution. Geology, 4: 698-701.
  • 4. Alvarez, W., Engelder, T. & Geiser, P. E., 1978. Classification of solution cleavage in pelagic limestones. Geology, 6: 263-266.
  • 5. Andrews, L. M. & Railsback, L. B., 1997. Controls on stylolite development: morphologic, lithologic, and temporal evidence from bedding-parallel and transverse stylolites from the US Appalachians. Journal of Geology, 105: 59-73.
  • 6. Bathurst, R. G. C., 1991. Pressure-dissolution and limestone bedding: the influence of stratified cementation. In: Einsele, G., Ricken, W. & Seilacher, A. (eds), Cycles and Events in Stratigraphy. Springer, Berlin, pp. 450-463.
  • 7. Bertok, C., Martire, L., Perotti, E., d’Atri, A. & Piana, F., 2011. Middle-Late Jurassic syndepostional tectonics recorded in the Ligurian Briançonnais succession (Marguareis-Mongioie area, Ligurian Alps, NW Italy). Swiss Journal of Geosciences, 104: 237-255.
  • 8. Bogacz, K., Dżułyński, S., Gradziński, R. & Kostecka, A., 1968. Origin of crumpled limestones in the Middle Triassic of Poland. Rocznik Polskiego Towarzystwa Geologicznego, 38: 385-394. [In Polish, with English summary.]
  • 9. Böhm, F., 1992. Mikrofazies und Ablagerungsmilieu des Lias und Dogger der Nordöstlichen Kalkalpen. Erlanger Geologische Abhandlungen, 121: 57-217.
  • 10. Braithwaite, C. J. R., 1989. Stylolites as open fluid conduits. Marine and Petroleum Geology, 6: 93-96.
  • 11. Buxton, T. M. & Sibley, D. F., 1981. Pressure solution features in a shallow buried limestone. Journal of Sedimentary Petrology, 51: 19-26.
  • 12. Clari, P. A. & Martire, L., 1996. Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, northeasters Italy). Journal of Sedimentary Research, 66: 447-458.
  • 13. Clari, P. A., Martini, P., Pastorini, M. & Pavia, G., 1984. Il Rosso Ammonitico Inferiore (Baiociano-Calloviano) nei Monti Lessini Settentrionali. Rivista Italiana di Paleontologia e Stratigrafia, 90: 15-86.
  • 14. Cox, S. F. & Etheridge, M. A., 1989. Coupled grain-scale dilatancy and mass transfer during deformation at high fluid pressures: examples from Mount Lyell, Tasmania. Journal of Structural Geology, 11: 147-162.
  • 15. Dromart, G., 1989. Deposition of Upper Jurassic fine-grained limestones in the Western Subalpine Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 23-43.
  • 16. Dżułyński, S., 1952. The origin of the Upper Jurassic limestones in the Cracow area. Rocznik Polskiego Towarzystwa Geologicznego, 21: 125-180. [In Polish, with English summary.]
  • 17. Dżułyński, S., Krysowska-Iwaszkiewicz, M., Oszast, J. & Starkel, L., 1968. On Lower Quaternary gravels in the Sandomierz Basin. Studia Geomorphologica Carpatho-Balcanica, 2: 6375. [In Polish, with English summary.]
  • 18. Ebner, M., Koehn, D., Toussaint, R. & Renard, F., 2009. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. Journal of Structural Geology, 31: 72-82.
  • 19. Ebner, M., Piazolo, S., Renard, F. & Koehn, D., 2010. Stylolite interfaces and surrounding matrix material: Nature and role of heterogeneities in roughness and microstructural development. Journal of Structural Geology, 32: 1070-1084.
  • 20. Elmi, S., 1981. Classifications typologique et génétique des Am- monitico Rosso et des facies noduleux ou grumeleux: essai de synthése. In: Farinacci, A. & Elmi, S. (eds), Proceedings of the Rosso Ammonitico Symposium. Tecnoscienza, Roma, pp. 233-249.
  • 21. Evans, M. A. & Elmore, R. D., 2006. Fluid control of localized mineral domains in limestone pressure solution structures. Journal of Structural Geology, 28: 284-301.
  • 22. Flügel, E., 2004. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer, Berlin, Heidelberg, New York, 976 pp.
  • 23. Gaillard, C., 1983. Les biohermes á spongiaires et leur environment dans l’Oxfordian du Jura méridional. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon, 90: 1-515.
  • 24. Garrison, R. E. & Fischer, A. G., 1969. Deep-water limestones and radiolarites of the Alpine Jurassic. In: Friedman, G. M. (ed.), Depositional environments in carbonate rocks. Society of Economic Paleontologists and Mineralogists, Special Publications, 14: 20-56.
  • 25. Garrison, R. E. & Kennedy, W. J., 1977. Origin of solution seams and flaser structure in Upper Cretaceous chalks of Southern England. Sedimentary Geology, 19: 107-137.
  • 26. Gołębiowska, B., Pieczka, A., Rzepa, G., Matyszkiewicz, J. & Krajewski, M., 2010. Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene-Miocene aridity in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 130-137.
  • 27. Gradziński, R., 1962. Origin and development of subterranean karts in southern part of the Cracow Upland. Rocznik Polskiego Towarzystwa Geologicznego, 31: 429-492. [In Polish, with English summary.]
  • 28. Gradziński, R., 1972. Przewodnik geologiczny po okolicach Krakowa. Wydawnictwa Geologiczne, Warszawa, 335 pp. [In Polish.]
  • 29. Gradziński, R., 2009. Geological Map of Krakow region without Quaternary and Terrestrial Tertiary Deposits. Wydawnictwo Instytutu Nauk Geologicznych PAN, Kraków.
  • 30. Gradziński, R. & Baryła, J., 1986. Projekt utworzenia, zabezpieczenia i zagospodarowania rezerwatu przyrody nieożywionej „Zimny Dól”z uwzględnieniem aspektów szaty roślinnej. Unpublished. Archiwum Zarządu Zespołu Jurajskich Parków Krajobrazowych w Krakowie, Kraków, 36 pp. [In Polish.]
  • 31. Gradziński, R. & Baryła, J., 2005. Values of the Zimny Dół valley and the local nature reserve. In: Partyka, J. (ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Volume 3 - Supplement. Ojcowski Park Narodowy, Ojców, pp. 11-18. [In Polish, with English summary.]
  • 32. Gradziński, R. & Musielewicz-Jasińska, Z., 1992. Rezerwat przyrody nieożywionej „Zimny Dół”. Chrońmy Przyrodę Ojczystą, 48(5): 78-83. [In Polish.]
  • 33. Hickman, S. H. & Evans, B., 1995. Kinetics of pressure solution at halite-silica interfaces and intergranular clay films. Journal of the Geological Society of London, 148: 549-560.
  • 34. Huber, S., 1987. Drucklösungserscheinungen in Karbonaten des Oxford 1 und Kimmeridge 1 der Bohrung TB-3 Saulgau (Oberschwaben). Facies, 17: 109-120.
  • 35. Hummel, P., 1960. Petrographie, Gliederung und Diagenese der Kalke im Oberen Weissen Jura der Schwäbischen Alp. Arbeiten aus dem Geologisch-Paläontologischen Institut der Universität Stuttgart, 26: 1-86.
  • 36. Jenkyns, H. C., 1974. Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model. In: Hsü, K. J. & Jenkyns, H. C. (eds), Pelagic Sediments: on Land and Under the Sea, Special Publication of the IAS, Volume 1. Wiley-Blackwell, Oxford, pp. 249-271.
  • 37. Kochman, A. & Matyszkiewicz, J., 2013. Experimental method for estimation of compaction in the Oxfordian bedded limestones of the southern Kraków-Częstochowa Upland, Southern Poland. Acta Geologica Polonica, 63: 681-696.
  • 38. Koehn, D., Renard, F., Toussaint, R. & Passchier, C. W., 2007. Growth of stylolite teeth patterns depends on normal stress and finite compaction. Earth and Planetary Science Letters, 257: 582-595.
  • 39. Koepnick, R. B., 1984. Distribution and vertical permeability of stylolites within a Lower Cretaceous carbonate reservoir, Abu Dhabi, United Arab Emirates. In: Moussly, M., Bathurst, R. G. C. & El-Ouri, A. (eds), Stylolites and Associated Phenomena Relevance to Hydrocarbon Reservoirs. Special Publication of the Abu Dhabi National Reservoir Research Foundation. U.A.E. Foundation, Abu Dhabi, pp. 261-278.
  • 40. Kołodziej, B., 2015. Geological context and age of the Štramberktype limestones from the Polish Outer Carpathians: an overview. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 276: 173-179.
  • 41. Krajewski, M., Matyszkiewicz, J., Król, K. & Olszewska, B., 2011. Facies of the Upper Jurassic-Lower Cretaceous deposits from the southern part of the Carpathian Foredeep basement in the Kraków-Rzeszów area (southern Poland). Annales Societatis Geologorum Poloniae, 81: 269-290.
  • 42. Krautter, M., 1998. Ecology of siliceous sponges: application to the environmental interpretation of the Upper Jurassic sponge facies (Oxfordian) from Spain. Cuadernos de Geologia Ibérico, 24: 223-239.
  • 43. Kukal, Z., 1975. On the origin of nodular limestones. Èasopis pro Mineralogii a Geologii, 20: 359-367.
  • 44. Kutek, J., 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geologica Polonica, 44: 167-221.
  • 45. Logan, B. W. & Semeniuk, V., 1976. Dynamic metamorphism process and products in Devonian carbonate rocks, Canning basin, western Australia. Geological Society of Australia, Special Publication, 6: 1-138.
  • 46. Łuczyński, P., 2001. Pressure-solution and chemical compaction of condensed Middle Jurassic deposits, High-Tatric series, Tatra Mountains. Geologica Carpathica, 52: 91-102.
  • 47. Mackie, G. O., Lawn, I. D. & Pavans de Ceccatty, M., 1983. Studies on hexactinellid sponges II. Excitability, conduction and coordination of responses in Rhabdocalyptus dawsoni (Lambe, 1873). Philosophical Transactions of the Royal Society, B301: 401-418.
  • 48. Manten, A. A., 1968. Pre- or post-induration formation of stylolite seams; a reply. Geologie en Mijnbouw, 47: 114-115.
  • 49. Marok, A. & Reolid, M., 2012. Lower Jurassic sediments from the Rhar Roubane Mountains (Western Algeria): Stratigraphic precisions and synsedimentary block-faulting. Journal of African Earth Sciences, 76: 50-65.
  • 50. Marshak, S. & Engelder, T., 1985. Development of cleavage in limestones of a fold-thrust belt in eastern New York. Journal of Structural Geology, 7: 345-35.
  • 51. Martire, L., 1996. Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies, 35: 209-236.
  • 52. Massari, F., 1979. Oncoliti e stromatoliti pelagiche nel Rosso Ammonitico Veneto. Memorie Societa Geologica Italiana, 32: 1-21.
  • 53. Massari, F., 1981. Cryptalgal fabrics in the Rosso Ammonitico sequences of the Venetian Alps. In: Farinacci, A. & Elmi, S. (eds), Rosso Ammonitico Symposium Proceedings. Edizioni Tecnoscienza, Roma, pp. 435-469.
  • 54. Matyja, B. A. & Wierzbowski, A., 2004. Stratigraphy and facies development in the Upper Jurassic of the Kraków-Częstochowa Upland and the Wieluń Upland. In: Partyka, J. (ed.), Zróżnicowanie i przemiany środowiska przyrodniczo-kulturowego Wyżyny Krakowsko-Częstochowskiej, Volume 1 - Nature. Ojcowski Park Narodowy, Ojców, pp. 13-18. [In Polish, with English summary.]
  • 55. Matyszkiewicz, J., 1989. Sedimentation and diagenesis of the Upper Oxfordian cyanobacterial-sponge limestones in Piekary near Kraków. Annales Societatis Geologorum Poloniae, 59: 201-232.
  • 56. Matyszkiewicz, J., 1994. Remarks on the deposition of pseudonodular limestones in the Cracow area (Oxfordian, southern Poland). Berliner Geowissenschaftliche Abhandlungen, E13: 419-439.
  • 57. Matyszkiewicz, J., 1996. The significance of Saccocoma-calciturbidites for the analysis of the Polish Epicontinental Late Jurassic Basin: an example from the Southern Cracow-Wieluń Upland (Poland). Facies, 34: 23-40.
  • 58. Matyszkiewicz, J., 1997. Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf: a comparative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow-Wieluń Upland, Poland). Berliner Geowissenschaftliche Abhandlungen, E21: 1-111.
  • 59. Matyszkiewicz, J., 1999. Sea-bottom relief versus differential compaction in ancient platform carbonates: a critical reassessment of an example from Upper Jurassic of the Cracow-Wieluń Upland. Annales Societatis Geologorum Poloniae, 69: 63-79.
  • 60. Matyszkiewicz, J., Felisiak, I., Hoffman, M., Kochman, A., Kołodziej, B., Krajewski, M. & Olchowy, P., 2015b. Transgressive Callovian succession and Oxfordian microbial-sponge carbonate buildups in the Kraków Upland. In: Haczewski, G. (ed.), Guidebook for Field Trips Accompanying 31st IAS Meeting of Sedimentology Held in Kraków on 22nd-25th of June 2015. Polish Geological Society, Kraków, pp. 51-73.
  • 61. Matyszkiewicz, J., Kochman, A. & Duś, A., 2012. Influence of local sedimentary conditions on development of microbialites in the Oxfordian carbonate buildups from the southern part of the Kraków-Częstochowa Upland (South Poland). Sedimentary Geology, 263-264: 109-132.
  • 62. Matyszkiewicz, J., Kochman, A., Rzepa, G., Gołębiowska, B., Krajewski, M., Gaidzik, K. & Żaba, J., 2015a. Epigenetic silicification of the Upper Oxfordian limestones in the Sokole Góry (Kraków-Częstochowa Upland); relation to facies development and tectonics. Acta Geologica Polonica, 65: 181203.
  • 63. Matyszkiewicz, J., Krajewski, M., Kochman, A., Kozłowski, A. & Duliński, M., 2016. Oxfordian neptunian dykes with brachiopods from the southern part of the Kraków-Częstochowa Upland (Southern Poland) and their links to hydrothermal vents. Facies, 62. DOI: 10.1007/s10347-016-0464-x
  • 64. Matyszkiewicz, J. & Słomka, T., 2004. Reef-microencrusters association Lithocodium aggregatum - Bacinella irregularis from the Cieszyn limestones (Tithonian-Berriasian) of the Outher Western Carpathians (Poland). Geologica Carpa- thica, 55: 449-456.
  • 65. Moore, C. H., 1989. Carbonate Diagenesis and Porosity. Elsevier, New York, 338 pp.
  • 66. Mullins, H. T., Neumann, A. C., Wilber, R. J. & Boardman, M. R., 1980. Nodular carbonate sediment on Bahamian slopes; possible precursors to nodular limestones. Journal of Sedimentary Petrology, 50: 117-131.
  • 67. Narkiewicz, M., 1978. Genesis of nodular structure in Upper Devonian limestones, Olkusz-Zawiercie area. Kwartalnik Geologiczny, 22: 693-706. [In Polish, with English summary].
  • 68. Nelson, R. A., 1981. Significance of fracture sets associated and classification. American Association of Petroleum Geologists Bulletin, 67: 313-322.
  • 69. Neugebauer, J., 1974. Some aspects of cementation in chalk. In: Hsü, K. J. & Jenkyns, H. C. (eds), Pelagic Sediments: on Land and under the Sea, Special Publication of the IAS, Volume 1. Wiley-Blackwell, Oxford, pp. 149-176.
  • 70. Niemeijer, A. & Spiers, C.-J., 2005. Influence of phyllosilicates on fault strength in the brittle-ductile transition: insights from rock Insight from rock analogue experiments. In: Bruhn, D. & Burlini, L. (eds), High-strain zones: Structure and physical properties. Geological Society of London Special Publication, 245: 303-327.
  • 71. Oszczypko, N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50: 169-194.
  • 72. Park, W. C. & Schot, E. H., 1968a. Stylolites: their nature and origin. Journal of Sedimentary Petrology, 38: 175-191.
  • 73. Park, W. C. & Schot, E. H., 1968b. Stylolitization in carbonate rocks. In: Müller, G. & Friedman, G. M. (eds), Recent Developments in Carbonate Sedimentology in Central Europe. Springer, Berlin, pp. 66-74.
  • 74. Pettit, J. P. & Mattauer, M., 1995. Paleostress superimposition deduced from mesoscale structures in limestone - the Matelles exposure, Languedoc, France. Journal ofStructural Geology, 17: 245-256.
  • 75. Pratt, B. R., 1982. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Petrology, 52: 1203-1227.
  • 76. Railsback, L. B., 1993a. Contrasting styles of chemical compaction in the Upper Pennsylvanian Dennis Formation in the Midcontinent region, USA. Journal of Sedimentary Petrology, 63: 61-72.
  • 77. Railsback, L. B., 1993b. Intergranular pressure dissolution and compaction in a Plio-Pleistocene grainstone buried no more than 30 meters: Shoofly oolite, southwestern Idaho. Carbonates and Evaporites, 8: 163-169.
  • 78. Railsback, L. B., 2002. An Atlas of Pressure Dissolution Features. Department of Geology of the University of Georgia. http:// www.gly.uga.edu/railsback /PDFindex1.html
  • 79. Riding, R., 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58: 163-231.
  • 80. Roehl, P. O., 1967. Stone Mountain (Ordovician) and Interlake (Silurian), facies analogs of recent low-energy marine and subaerial carbonates, Bahamas. American Association of Petroleum Geologists Bulletin, 51: 1979-2032.
  • 81. Rutter, E. H., 1983. Pressure solution in nature, theory, and experiment: Journal of the Geological Society, 140: 725-740.
  • 82. Schmid, D. U., 1996. Marine Mikrobolithe und Mikroinkrustierer aus dem Jura. Profil, 9: 101-251.
  • 83. Shinn, E. A. & Robbin, D. M., 1983. Mechanical and chemical compaction in fine-grained shallow-water limestones. Journal of Sedimentary Petrology, 53: 595-618.
  • 84. Steiger, T. & Jansa, L. F., 1984. Jurassic limestones ofthe seaward edge of the Mazagan Carbonate Platform (NW African continental margin, Morocco). In: Hinz, K., Winterer, E. L., et al. (eds), Initial Reports, Deep Sea Drilling Project, 79: 449491.
  • 85. Szulczewski, M., 1965. Observation sur la genese des calcaires noduleux des Tatras. Rocznik Polskiego Towarzystwa Geologicznego, 35: 243-261. [In Polish, with French summary.]
  • 86. Tabachnick, K. R., 1991. Adaptation of the Hexactinellid sponges to deep-sea life. In: Reitner, J. & Keupp, H. (eds), Fossil and Recent Sponges. Springer, Berlin, pp. 378-386.
  • 87. Tada, R. & Siever, R., 1989, Pressure solution during diagenesis: Annual Reviews Earth and Planetary Sciences, 17: 89-118.
  • 88. Trammer, J., 1982. Lower to Middle Oxfordian sponges of the Polish Jura. Acta Geologica Polonica, 32: 1-39.
  • 89. Trammer, J., 1989. Middle to Upper Oxfordian sponges ofthe Polish Jura. Acta Geologica Polonica, 39: 49-91.
  • 90. Trurnit, P., 1968a. Pressure solution phenomena in detrital rocks: Sedimentary Geology, 2: 89-114.
  • 91. Trurnit, P., 1968b. Analysis ofpressure solution contacts and classification of pressure solution phenomena. In: Müller, G. & Friedman, G. M. (eds), Recent Developments in Carbonate Sedimentology in Central Europe. Springer, Berlin, pp. 75-84.
  • 92. Tucker, M., 1974. Sedimentology of Palaeozoic pelagic limestones: the Devonian Griotte (Southern France) and Cephalopodenkalk (Germany). In: Hsü, K. J. & Jenkyns, H. C. (eds), Pelagic Sediments: on Land and under the Sea, Special Publication of the IAS, Volume 1. Wiley-Blackwell, Oxford, pp. 71-92.
  • 93. Viti, C., Collettini, C. & Tesei, T., 2014. Pressure solution seams in carbonatic fault rocks: Mineralogy, micro/nanostructures and deformation mechanism. Contributions to Mineralogy and Petrology, 167: 1-15.
  • 94. Wanless, H. R., 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology, 49: 437-462.
  • 95. Weyl, P. K., 1959. Pressure solution and the force of crystallization: a phenomenological theory. Journal Geophysical Research, 64: 2001-2025.
  • 96. Ziółkowski, P., 2007. Stratygrafia i zróżnicowanie facjalne górnej jury wschodniej części Wyżyny Krakowskiej. Volumina Jurassica, 4: 25-38. [In Polish.]
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12859b59-cd19-4aa0-bc5a-a4c0838f7a51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.