PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Examining wind flow's impact on multi-storey buildings: a quest for quality improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This scientific article delves into the intricacies of wind flow's impact on multi-storey buildings, presenting results from a series of experimental investigations. The research encompasses an examination of wind interactions with buildings of varying heights and geometric profiles. Furthermore, it unveils the effects of tall structures on the natural ventilation and smoke evacuation systems of shorter edifices, considering different wind flow directions. The study leverages specialized wind tunnel and measurement techniques for a comprehensive analysis of wind-induced loads on buildings. The acquired insights furnish crucial input for the design of single-story temporary modular constructions within densely populated urban areas, subject to wind-induced stresses. Additionally, they hold potential applicability in the advancement of energy-efficient technologies and strategies within the realm of construction. The acquired dataset underscores the criticality of scrutinizing wind flow's impact on structures of varied typologies and dimensions and will allow to significantly improve the quality and efficiency of modern buildings in the future.
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 50 poz,. rys., tab.
Twórcy
  • University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
autor
  • Lviv Polytechnic National University, Bandery 12, Lviv, Ukraine
  • Lviv Polytechnic National University, Bandery 12, Lviv, Ukraine
  • vasyl.m.zhelykh@lpnu.ua
  • Lviv Polytechnic National University, Bandery 12, Lviv, Ukraine
Bibliografia
  • 1. Abdelfatah, N., Elawady, A., Irwin, P., Chowdhury, A. 2020. A study of aerodynamic pressures on elevated houses. Wind and Structures, 31(4), 335-350. DOI: 10.12989/WAS.2020.31.4.335
  • 2. Blocken, B. 2018. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 11, 821-870. DOI: 10.1007/s12273-018-0459-3
  • 3. Carrilho da Graça, G., Linden, P. 2016. Ten questions about natural ventilation of non-domestic buildings. Building and Environment, 107, 263-273. DOI: 10.1016/j.buildenv.2016.08.007
  • 4. Chauhan, B. S., Chakrabarti, A., Ahuja, A. K. 2022. Study of wind loads on rectangular plan tall building under interference condition. Structures, 43, 105-130. DOI: 10.1016/j.istruc.2022.06.041
  • 5. Chen, G., Hang, J., Chen, L., Lin, Y. 2023. Comparison of uniform and nonuniform surface heating effects on in-canyon airflow and ventilation by CFD simulations and scaled outdoor experiments. Building and Environment, 244, 110744. DOI: 10.1016/j.buildenv.2023.110744
  • 6. Chen, Y., Tong, Z., Malkawi, A. 2017. Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. DOI: 10.1016/j.buildenv.2017.06.026
  • 7. Chen, Y., Tong, Z., Wu, W., Samuelson, H., Malkawi, A., Norford, L. 2019. Achieving natural ventilation potential in practice: Control schemes and levels of automation. Applied Energy, 235, 1141-1152. DOI: 10.1016/j.apenergy.2018.11.016
  • 8. Chu, C. 2023. Assessment of year-round wind-driven ventilation by an integrated ventilation model. Building and Environment, 243, 110710. DOI: 10.1016/j.buildenv.2023.110710
  • 9. Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A., Dagnew, A. 2016. LES evaluation of wind-induced responses for an isolated and a surrounded tall building. Engineering Structures, 115, 179-195. DOI: 10.1016/j.engstruct.2016.02.026
  • 10. Feng, C., Gu, M., Zheng, D. 2019. Numerical simulation of wind effects on super high-rise buildings considering wind veering with height based on CFD. Journal of Fluids and Structures, 91, 102715. DOI: 10.1016/j.jfluidstructs.2019.102715
  • 11. Fontes-Silva, P. H., Loredo-Souza, A. M., Rocha, M. M. 2022. Experimental study in wind tunnel of interference effects on the reduced model of the CAARC building. Latin American Journal of Solids and Structures, 19(2), e430. DOI: 10.1590/1679-78256898
  • 12. Furdas, Y., Yurkevych, Y., Zhelykh, V., Ulewicz, M. 2023. The Impact of Wind Flow on Multi-storey Buildings: Experimental Studies. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141-6_9
  • 13. Gaur, N., Raj, R. 2021. Aerodynamic mitigation by corner modification on square model under wind loads employing CFD and wind tunnel. Ain Shams Engineering Journal, 13(1), 101521. DOI: 10.1016/j.asej. 2021.06.007
  • 14. Giachetti, A., Bartoli, G., Mannini, C. 2022. Aerodynamics of a tall building equipped with a solid screen close to the façade. Journal of Wind Engineering and Industrial Aerodynamics, 225, 104999. DOI: 10.1016/j.jweia.2022.104999
  • 15. Gough, H., Sato, T., Halios, C., Grimmond, C., Luo, Z., Barlow, J., Robertson, A., Hoxey, R., Quinn, A. 2018. Effects of variability of local winds on cross ventilation for a simplified building within a full-scale asymmetric array: Overview of the Silsoe field campaign. Journal of Wind Engineering and Industrial Aerodynamics, 175, 408-418. DOI: 10.1016/j.jweia.2018.02.010
  • 16. Hirose, C., Ikegaya, N., Hagishima, A., Tanimoto, J. 2022. Computational fluid dynamics for cross-ventilated airflow in an urban building. Japan Architectural Review, 6(1), e12312. DOI: 10.1002/2475-8876.12312
  • 17. Huang, J., Gu, M., Gao, Y. 2021. Blockage effects on aerodynamics of isolated tall buildings under uniform turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104607. DOI: 10.1016/j.jweia.2021.104607
  • 18. Huang, Y., Ou, G., Fu, J., Zhang, H. 2022. Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks. Engineering Structures, 274, 115149. DOI: 10.1016/j.engstruct. 2022.115149
  • 19. Hubová,O.,Franek,M., Véghová,I. 2022.The Wind Tunnel Study of the Influence of Terrain and Surrounding Structures on the Distribution of Wind Pressure on a Chimney. Civil and Environmental Engineering,18(2) 507-514. DOI: 10.2478/cee-2022-0048
  • 20. Ikegaya, N., Hasegawa, S., Hagishima, A. 2018. Time-resolved particle image velocimetry for cross-ventilation flow of generic block sheltered by urban-like block arrays. Building and Environment, 147, 132-145. DOI: 10.1016/j.buildenv.2018.10.015
  • 21. Ikegaya, N., Kikumoto, H., Sasaki, K., Yamada, S., Matsui, M. 2022. Applications of wide-ranging PIV measurements for various turbulent statistics in artificial atmospheric turbulent flow in a wind tunnel. Building and Environment, 225, 109590. DOI: 10.1016/j.buildenv. 2022.109590
  • 22. Jiang, Z., Kobayashi, T., Yamanaka, T., Sandberg, M. 2023. A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143. DOI: 10.1016/j.enbuild.2023.113143
  • 23. Jóźwiak, R., Kacprzyk, J., Zurański, J. 1995. Wind tunnel investigations of interference effects on pressure distribution on a building. Journal of Wind Engineering and Industrial Aerodynamics, 57(2-3), 159-166. DOI: 10.1016/0167-6105(95)00004-B
  • 24. Kim, W., Tamura, Y., Yoshida, A., Yi, H. 2017. Interference effects of an adjacent tall building with various sizes on local wind forces acting on a tall building. Advances in Structural Engineering. DOI: 10.1177/1369433217750170
  • 25. Li, J., Hu, S., Li, Q. 2020. Comparative study of full-scale and model-scale wind pressure measurements on a gable roof low-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104448. DOI: 10.1016/j.jweia.2020.104448
  • 26. Li, Y., Yin, J.-T., Chen, F.-B., Li, Q.-S. 2023. Machine learning-based prediction of wind forces on CAARC standard tall buildings. Wind and Structures, 36(6), 355–366. DOI: 10.12989/WAS.2023.36.6.355
  • 27. Litovko, B. M., Lider, M. Y. 2021. Analysis of Ways to Increase Energy Efficiency of Ventilation and Air Conditioning Systems. Visnyk of Vinnytsia Politechnical Institute, (4), 47–55. DOI: 10.31649/1997-9266- 2021-157-4-47-55
  • 28. Myroniuk, K., Voznyak, O., Savchenko, O., Kasynets, M. 2023. Mathematical Modeling of an Air Flow Leakage with the Jets Interaction at the Variable Mode. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141- 6_29
  • 29. Nagar, S. K., Raj, R., Dev, N. 2022. Proximity effects between two plus-plan shaped high-rise buildings on mean and RMS pressure coefficients. Scientia Iranica, 29(3), 990-1005. DOI: 10.24200/sci. 2021.55928.4484
  • 30. Perén, J., Van Hooff, T., Leite, B., Blocken, B. 2015. CFD analysis of crossventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Building and Environment, 85, 263-276. DOI: 10.1016/j.buildenv.2014.12.007
  • 31. Potsis, T., Tominaga, Y., Stathopoulos, T. 2023. Computational wind engineering: 30 years of research progress in building structures and environment. Journal of Wind Engineering and Industrial Aerodynamics, 234, 105346. DOI: 10.1016/j.jweia.2023.105346
  • 32. Quan Y., Chen B., Gu M., Tamura Y. 2010. Effects of geometrical parameters on most unfavorable wind pressure coefficients on gable roofs of lowrise buildings[J]. Engineering Mechanics, 27(7), 142-147.
  • 33. Shen G., Li Y., Han K., Yu H., Shao J. 2023. Surface Wind Pressure and Aerodynamic Coefficients of Canopy Affiliated to High-rise Buildings Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 50 (7), 120-129. DOI: 10.16339/j.cnki.hdxbzkb.2023085
  • 34. Shirzadi, M., Naghashzadegan, M., A. Mirzaei, P. 2018. Improving the CFD modelling of cross-ventilation in highly-packed urban areas. Sustainable Cities and Society, 37, 451-465. DOI: 10.1016/j.scs.2017.11.020
  • 35. Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Experimental study on cross-ventilation of a generic building in highly-dense urban areas: Impact of planar area density and wind direction. Journal of Wind Engineering and Industrial Aerodynamics, 196, 104030. DOI: 10.1016/j.jweia.2019.104030
  • 36. Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Wind tunnel experiments on cross-ventilation flow of a generic sheltered building in urban areas. Building and Environment, 158, 60-72. DOI: 10.1016/j.buildenv. 2019.04.057
  • 37. Škvorc, P., Kozmar, H. 2023. The effect of wind characteristics on tall buildings with porous double-skin façades. Journal of Building Engineering, 69, 106135. DOI: 10.1016/j.jobe.2023.106135
  • 38. Tominaga, Y., Blocken, B. 2016. Wind tunnel analysis of flow and dispersion in cross-ventilated isolated buildings: Impact of opening positions. Journal of Wind Engineering and Industrial Aerodynamics, 155, 74-88. DOI: 10.1016/j.jweia.2016.05.007
  • 39. Tong, Z., Chen, Y., Malkawi, A. 2016. Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design. Applied Energy, 182, 625-633. DOI: 10.1016/j.apenergy.2016.08.098
  • 40. Tong, Z., Chen, Y., Malkawi, A. 2017. Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Applied Energy, 193, 276-286. DOI: 10.1016/j.apenergy.2017.02.041
  • 41. Van Hooff, T., Blocken, B., Tominaga, Y. 2017. On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, 114, 148-165. DOI: 10.1016/j.buildenv.2016.12.019
  • 42. Van Hooff, T., Blocken, B., Tominaga, Y. 2017. On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, 114, 148-165. DOI: 10.1016/j.buildenv.2016.12.019
  • 43. Voznyak, O., Myroniuk, K., Spodyniuk, N., Sukholova, I., Dovbush, O., Kasynets, M. 2022. Air distribution in the room by swirl compact air jets at variable mode. Pollack Periodica, 17(3), 117-122. DOI: 10.1556/606.2022.00515
  • 44. Y. Zheng, S. Chen. 2011. Wind tunnel experimental study of Wind pressure distribution on tall buildings considering surrounding interference," 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 5477-5480. DOI: 10.1109/CECNET.2011.5769416
  • 45. Yuan, Y., Yan, B., Zhou, X., Yang, Q., Wei, M., He, Y., Zhou, X., Li, X. 2023. Twisted-wind effect on the aerodynamic force acting on varying side-ratios tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105481. DOI: 10.1016/j.jweia.2023.105481
  • 46. Zhai, Z., Johnson, M., Krarti, M. 2011. Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy and Buildings, 43(9), 2251-2261. DOI: 10.1016/j.enbuild.2011.06.026
  • 47. Zhang, X., Buddhika, J., Wang, J., Weerasuriya, A., Tse, K. 2023. Numerical investigation of effects of trees on cross-ventilation of an isolated building. Journal of Building Engineering, 73, 106808. DOI: 10.1016/j.jobe.2023.106808
  • 48. Zhao, L., Li, Y. 2023. Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer. Tehnički vjesnik, 30 (4), 1274-1282. DOI: 10.17559/TV-20230205000324
  • 49. Zhelykh, V., Ulewicz, M., Furdas, Y., Adamski, M., Rebman, M. 2021. Investigation of Pressure Coefficient Distribution on the Surface of a Modular Building. Energies, 15(13), 4644. DOI: 10.3390/en15134644
  • 50. Zhong, H., Sun, Y., Shang, J., Qian, F., Zhao, F., Kikumoto, H., JimenezBescos, C., Liu, X. 2022. Single-sided natural ventilation in buildings: A critical literature review. Building and Environment, 212, 108797. DOI: 10.1016/j.buildenv.2022.108797
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1280ed03-70e0-4bd9-b21c-780c4a9857b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.