Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this manuscript, some effects such as nonlinear Kerr, stimulated Raman, and plasma generation effects lead to obtaining the nonlinear refraction index of the air along an intense ultra-short laser pulse based on one-dimensional propagation analysis. The variations in the pulse frequency by the self-phase modulation effect are investigated for achieving the functionality of the refractive index to the frequency. The mentioned functionality allows implementing Kramers–Kronig relations to measure the absorption coefficient. Results indicate that the front of the laser pulse faces a high rate of the energy loss whereas the back of the pulse experiences a gain. The implementation of Kramers–Kronig relations for a theoretical calculation of absorption coefficient variation along a laser pulse propagating in the air in which we have simultaneously taken into account the three above-mentioned effects distinguishes our work from other studies.
Czasopismo
Rocznik
Tom
Strony
501--512
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Department of Physics, Kerman Branch, Islamic Azad University, Kerman, Iran
autor
- Department of Physics, Kerman Branch, Islamic Azad University, Kerman, Iran
Bibliografia
- [1] BRAUN A., KORN G., LIU X., DU D., SQUIER J., MOUROU G., Self-channeling of high-peak-power femtosecond laser pulses in air, Optics Letters 20(1), 1995, pp. 73–75.
- [2] ZHAO X.M., DIELS J-C., How lasers might control lightning strokes, Laser Focus World 29(11), 1995, p. 113.
- [3] NIBBERING E.T.J., CURLEY P.F., GRILLON G., PRADE B.S., FRANCO M.A., SALIN F., MYSYROWICZ A., Conical emission from self-guided femtosecond pulses in air, Optics Letters 21(1), 1996, pp. 62–64.
- [4] MALIK H.K., Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration, Journal of Applied Physics 104(5), 2008, article 053308.
- [5] WAGNER W., Self-focusing as a pulse-sharpening mechanism, IEEE Journal of Quantum Electronics 3(10), 1967, pp. 415–416.
- [6] RAE S.C., BURNETT K., Possible production of cold plasmas through optical-field-induced ionization, Physical Review A 46(4), 1992, p. 2077.
- [7] MALIK H.K, KUMAR S., NISHIDA Y., Electron acceleration by laser produced wake field: pulse shape effect, Optics Communications 280(2), 2007, pp. 417–423.
- [8] SING K.P., MALIK H.K., Collimated GeV electrons from the ionization of a gas by a laser pulse in an intense magnetic field, Applied Physics Letters 93(4), 2008, article 044101.
- [9] SPRANGLE P., ESAREY E., TING A., JOYCE G., Laser wakefield acceleration and relativistic optical guiding, Applied Physics Letters 53(22), 1988, p. 2146.
- [10] AKÖZBEK N., SCALORA M., BOWDEN C.M., CHIN S.L., White light continuum generation and filamentation during the propagation of ultra-short laser pulses in air, Optics Communications 191(3–6), 2001, pp. 353–362.
- [11] YU J., MONDELAIN D., ANGE G., VOLK R., NIEDERMEIER S., WOLF J.P., KASPARIAN J., SAUERBREY R., Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air, Optics Letters 26(8), 2001, pp. 533–535.
- [12] KASPARIAN J., SAUERBREY R., CHIN S.L., The critical laser intensity of self-guided light filaments in air, Applied Physics B: Lasers and Optics 71(6), 2000, pp. 877–879.
- [13] COUAIRON A., BERGÉ L., Modeling the filamentation of ultra-short pulses in ionizing media, Physics of Plasmas 7(1), 2000, p. 193.
- [14] MALIK H.K., MALIK A.K., Tunable and collimated terahertz radiation generation by femtosecond laser pulses, Applied Physics Letters 99(25), 2011, article 251101.
- [15] ARIA A.K., MALIK H.K., Numerical studies on wakefield excited by Gaussian-like microwave pulse in a plasma filled waveguide, Optics Communications 282(3), 2009, pp. 423–426.
- [16] MALIK A.K., MALIK H.K., KAWATA S., Investigations on terahertz radiation generated by two superposed femtosecond laser pulses, Journal of Applied Physics 107(11), 2010, article 113105.
- [17] MALIK H.K., Density bunch formation by microwave in a plasma-filled cylindrical waveguide, Europhysics Letters (EPL) 106(5), 2014, article 55002.
- [18] MALIK H.K., ARIA A.K., Microwave and plasma interaction in a rectangular waveguide: effect of ponderomotive force, Journal of Applied Physics 108(1), 2010, article 013109.
- [19] TOMAR S.K, MALIK H.K., Density modification by two superposing TE10 modes in a plasma filled rectangular waveguide, Physics of Plasmas 20(7), 2013, article 072101.
- [20] SPRANGLE P., PENÑANO J.R., HAFIZI B., Propagation of intense short laser pulses in the atmosphere, Physical Review E 66(4), 2002, article 046418.
- [21] BOYD R.W., Nonlinear Optics, Academic Press, San Diego, 1992.
- [22] MILONNI P., EBERLY J.H., Lasers, Wiley, New York, 1988.
- [23] SLINKER S.P., ALI A.W., TAYLOR R.D., High-energy electron beam deposition and plasma velocity distribution in partially ionized N2, Journal of Applied Physics 67(2), 1990, p. 679.
- [24] LADOUCEUR H.D., BARONAVSKI A.P., LOHRMANN D., GROUNDS P.W., GIRARDI P.G., Electrical conductivity of a femtosecond laser generated plasma channel in air, Optics Communications 189(1–3), 2001, pp. 107–111.
- [25] KELDYSH L.V., Ionization in the field of a strong electromagnetic wave, Journal of Experimental and Theoretical Physics (JETP) 20(5), 1965, p. 1307, (Russian original: ZhETF 47(5), 1965, p. 1945).
- [26] WEYL G.M., [In] Laser-Induced Plasmas and Applications, [Ed.] Radziemski L.J., Cremers D.B., Dekker, Inc., New York, 1989.
- [27] RIPOCHE J.-F., GRILLON G., PRADE B., FRANCO M., NIBBERING E., LANGE R., MYSYROWICZ A., Determination of the time dependence of n2 in air, Optics Communications 135(4–6), 1997, pp. 310–314.
- [28] SODHA M.S., GHATAK A.K., TRIPATHI V.K., Self-Focusing of Laser Beams in Dielectrics, Plasma and Semiconductors, Tata McGraw-Hill, New Delhi, 1974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12789479-f8e8-4951-b80c-6ec2f8cb78c8