PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Problems in designing and operating functional safety solutions of higher integrity levels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to identify and discuss some problems that have been encountered in designing and operating the functional safety solutions of higher safety integrity levels (SIL 3 and SIL 4) in the light of analyses outlined in a new version of the international standard IEC 61508:2010. Examples of such solutions are the electric / electronic / programmable electronic systems (E/E/PESs) and the safety instrumented systems (SISs) being designed and operated respectively according to IEC 61508 and IEC 61511 in the system safety life cycle. The role of functional safety solutions is effective reducing and controlling the individual and/or societal risk with regard to tolerable levels defined. Some aspects of potential influence of danger failures of the E/E/PESs or SISs on the plant safety are considered. The influence of common cause failures (CCFs) and dependent failures in the context of the layer of protection analysis is also discussed.
Rocznik
Strony
83--100
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] Barnert, T., Kosmowski, K.T. & Sliwiński, M. (2009). A knowledge-based approach for functional safety management. Taylor & Francis Group, Proc. European Safety & Reliability Conference ESREL, Prague.
  • [2] Barnert, T., Kosmowski, K.T. & Śliwiński, M. (2010). Integrated functional safety and security analysis of process control and protection systems with regard to uncertainty issues. Proc. PSAM 10, Seattle,
  • [3] Carey, M. (2001). Proposed Framework for Addressing Human Factors in IEC 61508. A Study prepared by Amey VECTRA Ltd. for Health and Safety Executive (HSE), U.K., Research Report 373.
  • [4] Gertman, I.D. & Blackman, H.S. (1994). Human Reliability and Safety Analysis Data Handbook. New York: A Wiley-Interscience Publication.
  • [5] Gruhn, P. & Cheddie, H. (2006). Instrumented Systems: Design, Analysis and Justification. ISA – The Instrumentation, Systems and Automation Society.
  • [6] Guidance (2009). Guidance on the Treatment of Uncertainties Associated with PRAs in RiskInformed Decision Making, Office of Nuclear Regulatory Research, NUREG-1855, Vol. 1, US NRC.
  • [7] EEMUA (2007). Publication 191: Alarm Systems, A Guide to Design, Management and Procurement (Edition 2). London: The Engineering Equipment and Materials Users’ Association.
  • [8] IAEA (2010). Nuclear Energy Series No. NP-T3.10: Integration of Analog and Digital Instrumentation and Control Systems in Hybrid Control Rooms, Vienna.
  • [9] IAEA (2011). Nuclear Energy Series No. NP-T3.12: Core Knowledge on Instrumentation and Control Systems in Nuclear Power Plants, Vienna.
  • [10] Froome, P. & Jones, C. (2002). Developing Advisory Software to comply with IEC 61508. Contract Research Report 419. Series: HSE Books.
  • [11] IEC 61508 (2010). Functional Safety of Electrical/ Electronic/ Programmable Electronic Safety-Related Systems, Parts 1-7. International Electrotechnical Commission. Geneva.
  • [12] IEC 61511 (2003). Functional safety: Safety Instrumented Systems for the Process Industry Sector. Parts 1-3. International Electrotechnical Commission, Geneva.
  • [13] IEC 61513 (2011): Nuclear power plants, Instrumentation and control for systems important to safety, General requirements for systems. International Electrotechnical Commission, Geneva .
  • [14] Kosmowski, K.T. (2004). Modelling and uncertainty in system analysis for safety assessment. Proc. of the International Conference on Probabilistic Safety Assessment and Management, PSAM 7 - ESREL ’04, Berlin, Springer.
  • [15] Kosmowski, K.T. (2006). Functional Safety Concept for Hazardous System and New Challenges. Journal of Loss Prevention in the Process Industries 19(1), 298-305.
  • [16] Kosmowski, K.T., Śliwiński, M. & Barnert, T. (2006). Functional safety and security assessment of the control and protection systems. Taylor & Francis Group, Proc. European Safety & Reliability Conference, ESREL 2006, Estoril. London.
  • [17] Kosmowski, K.T. (Ed.) (2007). Functional Safety Management in Critical Systems. Gdansk University of Technology. Publishing House OF Gdansk University (Wydawnictwo Fundacji Rozwoju Uniwersytetu Gdańskiego).
  • [18] Kosmowski, K.T. (2011). Functional Safety Analysis including Human Factors. International Journal of Performability Engineering 7 (1), 61-76.
  • [19] Kosmowski, K.T. (2012): Current challenges and methodological issues of functional safety and security management in hazardous technical systems. Journal of Polish Safety and Reliability Association, Vol. 3 (1), 39-51.
  • [20] Kosmowski, K.T., Barnert, T., Śliwiński, M. & Porzeziński, M. (2012). Functional Safety Assessment within the Risk Informed Decision Making Process. PSAM 11 – ESREL 2012, Helsinki.
  • [21] SINTEF (2007). The SeSa Method for Assessing Secure Remote Access to Safety Instrumented Systems. SINTEF A1626.
  • [22] LOPA (2001): Layer of Protection Analysis, Simplified Process Risk Assessment. Center for Chemical Process Safety. American Institute of Chemical Engineers, New York.
  • [23] OECD Report (1998): Critical Operator Actions – Human Reliability Modeling and Data Issues. Nuclear Safety, NEA/CSNI/R; OECD Nuclear Energy Agency.
  • [24] R2P2 (2001). Reducing Risk, Protecting People. HSE’s Decision Making Process, Norwich.
  • [25] Reason, J. (1990). Human Error. Cambridge University Press.
  • [26] SPAR-H (2005): Human Reliability Analysis Method, NUREG/CR-6883, INL/EXT-05-00509, US NRC.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1277cd58-02fa-4cb6-9a9e-ff434bec2eac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.