PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid Watermarking Algorithm using Finite Radon and Fractional Fourier Transform

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Watermarking is proposed as solution to authentication, copyright protection and security requirements of multimedia objects (speech, image and video). In this paper a watermarking scheme based on finite radon transform (FRAT), fractional Fourier Transform (FRFT) and singular value decomposition is proposed. In the proposed scheme, image to be watermarked is first transformed by finite radon transform, the radon transformed image is further transformed by FRFT, and singular values of FRFT transformed image are modified to embed the watermark. Inverse transformation is applied to obtain watermarked image. Simulations are performed under various test conditions with different FRFT transform angles for improved robustness and visual transparence of watermarked image. Results of the proposed scheme are better in comparison to the existing schemes for most of the attacks. Proposed scheme provide additional degree of freedom in security, robustness, payload capacity and visual transparence. Proposed scheme can also be used to communicate or store the watermarked image as erasure code, to reduce communication errors over a network, due to the use of FRAT.
Wydawca
Rocznik
Strony
523--543
Opis fizyczny
Bibliogr. 47 poz., fot., rys., tab., wykr.
Twórcy
  • Department of E.C.E, Rajasthan Technical University, Kota, India
  • Department of E.C.E, Malviya National Institute of Technology, Jaipur, India
  • Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India
autor
  • Institute for Groundwater Studies, University of the Free State, 9301, Bloemfontein, South Africa
Bibliografia
  • [1] Cox IJ, Miller ML, and McKellips AL. Watermarking as communications with side information, Proc. IEEE 1999; 87 (7): 1127-1141. doi: 10.1109/5.771068.
  • [2] Voyatzis G, and Pitas I. Chaotic Watermarks for Embedding in the Spatial Digital Image Domain, Proc. IEEE International Conf. on Image Processing (ICIP) 1998; 2: 432-436. doi: 10.1109/ICIP1998.723411.
  • [3] Wolfgang RB, and Delp EJ. A watermark for digital images, Proceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland 1996: 219-222. doi: 10.1109/ICIP.1996.560423.
  • [4] Ruanaidh J, Dowling W, and Boland F. Phase watermarking of digital images, in Proc. of IEEE Int. Conf. on Image Processing, 1996,: 239-242. doi : 10.1109/ICIP.1996.560428.
  • [5] Hsu CT, and Wu JL. DCT-Based Watermarking for Video, IEEE Trans, on Consumer Electronics 1998; 44 (1): 206-216. doi: 10.1109/30.663749.
  • [6] Wai CC. DCT-based image watermarking using subsampling, IEEE Trans, on Multimedia 2003; 5 (1): 34-38. doi: 10.1109/TMM.2003.808816.
  • [7] Wang X, Zhang D, and Guo X. A novel image recovery method based on discrete cosine transform and matched blocks, Nonlinear Dyn 2013: 73: 1945-1954. doi: 10.1007/s11071-013-0915-7.
  • [8] Li E, Liang H, and Niu X. An integer wavelet based multiple logo watermarking Scheme, in Proceedings of the IEEE WCICA, 2006: 10256-10260. doi: 10.1109/IMSCCS.2006.187.
  • [9] Ellinas J. N. A robust wavelet-based watermarking algorithm using edge detection, World Academy of Science, Engineering and Technology 2007; 34: 291-296. doi: 10.1.1.81.8931.
  • [10] Zhang X, and Wang S. Fragile watermarking with error-free restoration capability, IEEE Trans, on multimedia 2008; 1490-1499. doi: 10.1109/TMM.2008.2007334.
  • [11] Teng L, Wang X, and Wang X. Cryptanalysis and improvement of a chaotic system based fragile watermarking scheme, Int. J. Electron. Commun. (AE) 2013: 67: 540-547. doi: 10.1016/j.aeue.2012.12.001.
  • [12] Wang X, Zhang D, and Guo X. Authentication and recovery of images using standard deviation, Journal of Electronic Imaging 2013; 22 (3): 033012. doi: 10.1117/1.JEI.22.3.033012.
  • [13] Lina E T, Christine I P, and Edward J D. Detection of image alterations using semi-fragile watermarks, Proc. of the SPIE Int. Conf. on Security and Watermarking of Multimedia Contents II 2000, 3971. URL http://skynet.ecn.purdue.edu/pub/dist/delp/ei00-water/paper.pdf.
  • [14] Seo J S, Haitsma J, Kalker T, and Chang D Y. A robust image fingerprinting system using the Radon transform, Signal Processing: Image Communication 2004; 19 (4): 325-339. doi: 10.1016/j.image.2003.12.001.
  • [15] Nguyen DQ, Weng L, and Preneel B. Radon transform-based secure Image hashing, Proceedings IFIP International Conference on Communications and Multimedia Security CMS’11, 2011 pp. 186-193. doi: 10.1007/978-3-642-24712-5_17.
  • [16] Zhen Y, and Rajpoot N. Radon/Ridgelet signature for image authentication, In International Conference on Image Processing (ICIP 04) 2004, pp. 43-56. ISSN: 1522-4880. doi: 10.1109/ICIP.2004.1418685.
  • [17] Kingston A, Colosimo S, Campisi P, and Autrusseau F. Lossless image compression and selective encryption using a discrete Radon transform, IEEE International Conference on Image Processing, ICIP 2007. doi: 10.1109/ICIP.2007.4380055.
  • [18] Stankovic S, Djurovic I, and Pitas L. Watermarking in the space/spatial-frequency domain using two-dimensional Radon-Wigner distribution, IEEE Trans. on Image Proc. 2001; 10 (4): 650-658. doi: 10.1109/83.913599.
  • [19] Stankovic S. Time-frequency analysis and its application in digital watermarking, EURASIP Journal on Advances in Signal Processing, 2010 pp. 20. doi: 10.1155/2010/579295.
  • [20] Djurovic I, Stankovic S, and Pitas I. Digital watermarking in the fractional Fourier transform domain, J. of Network and Computer Applications 2001; 24 (2): 167-173. doi: 10.1006/jnca.2000.0128.
  • [21] Sharma J B, Sharma K K, and Sahula V. Image dual watermarking using self fractional Fourier functions, bivariate empirical mode decomposition and error correcting code, Journal of optics 2013; 42: 3, 214-227. doi: 10.1007/s12596-013-0125-1.
  • [22] Bhatnagar G, and Raman B. Robust watermarking scheme based on multiresolution fractional Fourier transform, Sixth Indian Conf. on Computer Vision, Graphics & Image Proc. 2008: 16-19. doi: 10.1109/ICVGIP.2008.15.
  • [23] Nishchal N K. Optical image watermarking using fractional Fourier transform, J Opt. 2009; 38 (l): 22-28. doi: 10.1007/s12596-009-0003-z.
  • [24] Rawat S, and Raman B. A blind watermarking algorithm based on fractional Fourier transform and visual cryptography, Signal Proc. 2012; 92: 1480-1491. doi: 10.1016/j.sigpro.2011.12.006.
  • [25] Sharma K K, and Fageria D K. Watermarking based on image decomposition using self-fractional Fourier functions, J Opt. 2011; 40: 45-50. doi: 10.1007/s12596-011-0032-2.
  • [26] Chin-Chen C, Piyu T, and Chia-Chen L c. SVD-based digital image watermarking scheme, Pattern Recognition Letters 2005; 26: 1577-1586. doi: 10.1016/j.patrec.2005.01.004.
  • [27] Liu R, and Tan T. An SVD-based based watermarking scheme for protecting rightful ownership, IEEE tran. on Multimedia 2002; 4 (1): 121-128. doi: 10.1016/j.sigpro.2008.02.015.
  • [28] Bao P, and Ma X. Image adaptive watermarking using wavelet domain singular value decomposition, IEEE Trans. Circuits Syst. Video Technol. 2005; 15 (1): 96-102. doi: 10.1109/TCSVT.2004.836745.
  • [29] Saeed R, Fateme N, Khashayar Y, and Amir A. Hybrid watermarking algorithm based on singular value decomposition and radon transform, AEU Int. Journal of Elect, and Comm. 2011; 65 (7): 658-663. doi: 10.1016/j.aeue.2010.09.008.
  • [30] Matu S F, and Flusser J. Image representations via a finite Radon transform. IEEE Trans Pattern Anal Mach Intell 1993; 15 (10): 996-1006. doi: 10.1109/34.254058.
  • [31] Do M N, and Vetterli M. The finite Ridgelet transform for image representation. IEEE Trans Image Process 2003; 12 (1): 16-28. doi: 10.1109/TIP.2002.806252.
  • [32] Xiao L, Wei Z-h, and Huizhong W. Ridgelet-based robust and perceptual water marking for images. IJC-SNS Int J Comput Sci Netw Security 2006; 6 (2B): 194-201. doi: 10.1.1.603.3244.
  • [33] Ozaktas H. M., Kutay M. A., and Zalevsky Z. The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York, Wiley Sons, 2001. ISBN: 978-0-471-96346-2.
  • [34] Ozaktas H. M., Arikan O., Kutay M. A., and Bozdagi G. Digital computation of the fractional Fourier transform, IEEE Tran. on Signal Processing, 1996; 44 (9): 2141-2149. doi: 10.1109/78.536672.
  • [35] Sejdi E, Djurovi I, and Stankovi L J. Fractional Fourier transform as a signal processing tool: An overview of recent developments, Signal Processing, Special issue on Fourier Related Transforms for Non-Stationary Signals 2011; 91 (6): 1351-1369. doi: 10.1016/j.sigpro.2010.10.008.
  • [36] Lang J, and Zhang Z-g. Blind digital watermarking method in the fractional Fourier transform domain, Optics and Lasers in Engineering 2014; 53 (2): 112-121. doi: 10.1016/j.optlaseng.2013.08.021.
  • [37] Minamoto T, and Ohura R. A blind digital image watermarking method based on the dyadic wavelet transform and interval arithmetic, Applied Mathematics and Computation 2014; 226 (1): 306-319. doi: 10.1016/j.amc.2013.10.028.
  • [38] Ali M, and Ahn C W. An optimized watermarking technique based on self-adaptive DE in DWTSVD transform domain, Signal Processing 2014; 94 (1): 545-556. doi: 10.1016/j.sigpro.2013.07.024.
  • [39] Qi M, Li B-Z, and Sun H . Image watermarking via fractional polar harmonic transforms,J. Electron. Imaging 2015; 24 (1). doi: 10.1117/1.JEI.24.1.013004.
  • [40] Sun L, Xu J, Zhang X, and Tian Y. An Image watermarking scheme using Arnold transform and Fuzzy smooth support vector machine, Mathematical Problems in Engineering 2015; Article ID 931672, 14 pages. doi: 10.1155/2015/931672.
  • [41] Ali M, Chang W A, Pant M, and Siarry P. A reliable Image watermarking scheme based on redistributed Image normalization and SVD, Discrete Dynamics in Nature and Society 2016; Article ID 3263587, 15 pages. doi: 10.1155/2016/3263587.
  • [42] Yu M, Wang J, Jiang G, Peng Z, Shao F, Luo T. New fragile watermarking method for stereo image authentication with localization and recovery, Int. J. Electron. Commun. (AE) 2015; 69: 361-370. doi: 10.1016/j.aeue.2014.10.006.
  • [43] Normand N, Svalbe I, Parrein B, Kingston A. Erasure coding with the finite Radon transform, IEEE Communications, WCNC 2010 proceedings. Wireless Communication and Networking Conference. doi: 10.1109/WCNC.2010.5506385.
  • [44] Pertin D, D’Ippolito G, Normand N, Parrein. Spatial implementation for erasure coding by finite Radon transform, International Symposium on signal, Image, Video and Communication 2012, Valenciennes, France. doi: hal-00716061.
  • [45] Baskonus H M, Bulut H. On the numerical solutions of some fractional ordinary differential equations by fractional adams-bashforth-moulton method, Open Mathematics 2015; 13 (1): 547-556. doi: 10.1515/math-2015-0052.
  • [46] Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan T-F. Pathological brain detection by a novel Image feature fractional Fourier entropy, Enropy 2015; 17 (12): 8278-8296. doi: 10.3390/e17127877.
  • [47] Wang S, Yang M, Zhang Y, Li J, Zou L, Lu S, Liu B, Yang J, and Zhang Y. Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform. Entropy. 2016; 18 (5): 194. doi: 10.3390/e18050194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-126b725f-c6c8-4ade-86e6-1a0a3685b9a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.