PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Approximation of complex q-Beta-Baskakov-Szász-Stancu operators in compact disk

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose this study is to present and investigate the q-Beta-Baskakov-Szasz-Stancu operator. The operators are accompanied by Voronovskaja-type consequences, which include both an exact approximation order and a quantitative assessment, specifically within compact disks.
Wydawca
Rocznik
Strony
art. no. 20230158
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca 400114, Romania
  • Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
  • Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
Bibliografia
  • [1] R. Aslan, Some approximation Results on lambda-Szász-Mirakjan-Kantorovich operators, Fundam. J. Math. Appl. 4 (2021), no. 3, 150–158, DOI: https://doi.org/10.33401/fujma.903140.
  • [2] P. N. Agrawal, D. Kumar, and S. Araci, Linking of Bernstein-Chlodowsky and Szász-Appell-Kantorovich type operators, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3288–3302, DOI: http://dx.doi.org/10.22436/jnsa.010.06.39.
  • [3] H. Cicek and A. İzgi, Approximation by modified bivariate Bernstein-Durrmeyer and GBS bivariate Bernstein-Durrmeyer operators on a triangular region, Fundam. J. Math. Appl. 5 (2022), no. 2, 135–144, DOI: https://doi.org/10.33401/fujma.1009058.
  • [4] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-calculus in Operator Theory, Springer, Berlin, 2013.
  • [5] A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint, vol. 9, 1987, pp. 85–92.
  • [6] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511–518, DOI: https://doi.org/10.12691/tjant-3-5-4.
  • [7] P. Maheshwari and D. Sharma, Approximation by q-Baskakov-Beta-Stancu operators, Rend. Circ. Mat. Palermo, 61 (2012), 297–305, DOI: https://doi.org/10.1007/s12215-012-0090-6.
  • [8] N. K. Govil and V. Gupta, q-Beta-Szász-Stancu operators, Adv. Stud. Contemp. Math. 22 (2012), no. 1 117–123.
  • [9] I. Yüksel and Ü. Dinlemez, Voronovskaja type approximation theorem for q-Szász-Beta operators, Appl. Math. Comp, 235 (2014), 555–559, DOI: https://doi.org/10.1016/j.amc.2014.03.020.
  • [10] P. Gupta and P. N. Agrawal, Rate of convergence of Szász-Beta operators based on q-integers, Demonstr. Math. 50 (2017), no. 1, 130–143, DOI: https://doi.org/10.1515/dema-2017-0015.
  • [11] Ü. Dinlemez, Convergence of the q-Stancu-Szász-Beta type operators, J. Inequal. Appl. 2014 (2014), 354, DOI: https://doi.org/10.1186/1029-242X-2014-354.
  • [12] V. Gupta and N. I. Mahmudov, Approximation properties of the q-Szász-Mirakjan-Beta operators, Indian Jour. Indust. Appl. Math. 3 (2012), no. 2, 41–53.
  • [13] I. Yüksel, Approximation by q-Baskakov-Schurer-Szász type operators, AIP Confer. Proc. 1558 (2013), no. 1, 1136–1139, DOI: https://doi.org/10.1063/1.4825708.
  • [14] M. Vishnu Narayan, K. Kejal, and N. M. Lakshmi, Some approximation properties of q-Baskakov-Beta-Stancu type operators, J. Calc. Var 2013 (2013), 814824, DOI: https://doi.org/10.1155/2013/814824.
  • [15] A. Aral and V. Gupta, On the q-analogue of Stancu-Beta operators, Appl. Math. Lett. 25 (2012), no. 1, 67–71, DOI: https://doi.org/10.1016/j.aml.2011.07.009.
  • [16] I. Yüksel and Ü Dinlemez, Weighted approximation by the q-Szász-Schurer-Beta type operators, Gazi Univ. J. Sci. 28 (2015), no. 2, 231–238.
  • [17] L. Cheregi, Approximation of complex q-Baskakov-Schurer-Szász-Stancu operators in compact disks, Rend. Circ. Mat. Palermo, II. Ser 72 (2023), 1919–1935, DOI: https://doi.org/10.1007/s12215-022-00777-0.
  • [18] V. Gupta and A. Ahmad, Simultaneous approximation by modified Beta operators, İstanb. Univ. Sci. Fac. J. Math. Phys. Astronom. 54 (1996), 11–22.
  • [19] M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman, and M. Ayman-Mursaleen, On one- and two-dimensional α-Stancu-Schurer-Kantorovich operators and their approximation properties, Mathematics 10 (2022), 3227.
  • [20] Q.-B. Cai, A. Kiliçcman, and M. Ayman-Mursaleen, Approximation properties and q-statistical convergence of Stancu type generalized Baskakov-Szász operators, J. Funct. Spaces 2022 (2022), 2286500.
  • [21] M. Nasiruzzaman, A. Kiliçman, and M. Ayman-Mursaleen, Construction of q-Baskakov operators by wavelets and approximation properties, Iran J. Sci. 46 (2022), 1495–1503.
  • [22] N. Rao, M. Raiz, M. Ayman-Mursaleen, and V. N. Mishra, Approximation properties of extended Beta-type Szász-Mirakjan operators, Iran J. Sci. 47 (2023), 1771–1781.
  • [23] E. Savaç and M. Mursaleen, Bézier type Kantorovich q-Baskakov operators via wavelets and some approximation properties, Bull. Iran. Math. Soc. 49 (2023), 68.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-126b4fc7-5352-4484-a904-675dfbb7098d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.