PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping Soil Clay Content and Hydraulic Properties over an Agricultural Semiarid Plain Using Remote Sensing and Interpolation Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Clay content is an important parameter governing hydrodynamics property of soils and consequently crucial to environmental management and agricultural development. The present study aims to use the textural middle infrared index (MID index) product of Landsat-8 Operational Land Images to map clay content over the Haouz plain (Central Morocco). The clay content was mapped at 30 m grid spatial resolution based on the relationship between the MID index and a large set of soil samples. Over the areas covered by green vegetation, the clay content was predicted using the ordinary cokriging technique. Then, this information was used to derive soil hydraulic properties such as the field capacity (θfc), the wilting point (θwp) and the saturated hydraulic conductivity (Ksat) by using different pedotransfer functions. The validation of the maps was performed by using independent soil samples and measurements. The results showed that the clay content is significantly correlated to MID index. The ordinary cokriging improved mapping of clay content over the Haouz plain (R2= 0.70, RMSE = 3.5%). The obtained maps of θfc, θwp and Ksat revealed a good correlation between the simulated values and the measured values.
Twórcy
autor
  • Department of Health and Agro-Industry Engineering High School of Engineering and Innovation of Marrakesh, Private University of Marrakesh, Road Amezmiz, Marrakech, Morocco
autor
  • LMI TREMA, Cadi Ayyad University, Marrakech, Morocco
  • Center for Remote Sensing Applications, Mohammed VI Polytechnic University, Morocco
autor
  • Center for Remote Sensing Applications, Mohammed VI Polytechnic University, Morocco
  • Faculty of Science and Technology, University Cadi Ayyad, Marrakech, Morocco
autor
  • Center for Remote Sensing Applications, Mohammed VI Polytechnic University, Morocco
  • Department of Physics, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
  • Department of Physics, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech, Morocco
  • Centre d’Etudes Spatiales de la Biosphère, 31400 Toulouse, France
Bibliografia
  • 1. Anderson M.C. 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112, 4227–4241.
  • 2. Bartholomeus H., Epema G., Schaepman M. 2007. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. International journal applied earth observation and geoinformation, 9, 194–203.
  • 3. Bastiaanssen W.G.M. 2005. SEBAL model with remotely sensed data to improve water resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85–93.
  • 4. Benabdelouahab T. 2005. Spatialization of old and recent pedological data with a view to estimating the hydrodynamic parameters of the soils of the Tensift plain. End of engineering studies internship report, Hassan II Agronomic and Veterinary Institute, Rabat, Morocco, pp. 89.
  • 5. Blanco-Canqui, H., Lal R. 2008. Principles of soil conservation and management. Springer, New York, pp. 617.
  • 6. Boukhari, K., Fakir, Y.,Stigter, T.Y., Hajhouji, Y.,Boulet, G. 2015. Origin of recharge and salinity and their role on management issues of a large alluvial aquifer system in the semi-arid Haouz plain, Morocco. Environmental Earth Sciences, 73(10), 6195–6212.
  • 7. Boulet, G., Mougenot, B., Ben Abdelouahab, T. 2009. An evaporation test based on Thermal Infra Red remote sensing to select appropriate soil hydraulic properties. Journal of Hydrology, 376, 589–598.
  • 8. Camacho-Tamayo, J.H., Rubiano, S.Y., Hurtado, S.M.P. 2014. Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol. Agr. Col. 32(1), 86–94.
  • 9. Chehbouni, A., Escadafal, R., Duchemin, B., Boulet, G. 2012. An integrated modeling and remote sensing approach for hydrological study in arid and semi-arid regions: the SUDMED programme. International Journal Remote Sensing, 29(17–18), 5161–5181.
  • 10. Diallo, D., Mariko, A. 2013. Field capacity (FC) and permanent wilty point (PWP) of clay soils developed on Quaternary alluvium in Niger River loop (Mali). International Journal of Engineering Research and Applications, 3(1), 1085–1089.
  • 11. Dirk, R.D., Paquale, S.P., Hsiao, T.C., Fereres, E. 2012. With contributions of the AquaCrop Network.
  • 12. Dulakshi, S.K.K. 2022. Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629
  • 13. Eck, D.V., Qin, M., Hirmas, D.R., Giménez, D., Brunsell, A. 2016. Relating Quantitative Soil Structure Metrics to Saturated Hydraulic Conductivity. Soil Science Society of America, 15, 1.
  • 14. Er-Raki, S., Chehbouni, A., Boulet, G., Williams, D.G. 2010. Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region. Agricultural Water Management, 97, 1769–1778.
  • 15. Er-Raki, S., Chehbouni, A., Guemouria, N., Duchemin, B., Ezzahar, J., Hadria, R. 2007. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agricultural water management, 87(1), 41–54.
  • 16. Giarola, N.F.B., Silva, A.P., Imhoff, S. 2002. ‘Relações entre propriedades físicase características de solos da Região Sul do Brasil’. Revista Brasileira de Ciencia do Solo, 26, 885–893.
  • 17. Gomez, C., Lagacherie, P., Coulouma, G. 2012. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data’. Geoderma. 189–190, 176–185.
  • 18. Greve, M.H., Kheir, R.B., Greve, M.B., Bocher, P.K. 2012. Quantifying the ability of environmental parameters to predict soil texture fractions using a regression-tree model with GIS and LIDAR data: The case study of Denmark. Ecological Indicators, 18, 1–10.
  • 19. Haghnazari, F., Shahgholi, H., Feizi, M. 2015. Factors affecting the infiltration of agricultural soils: review. International Journal of Agronomy and Agricultural Research, 6(5), 21–35.
  • 20. Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G.A. 2010. multi-temporal method for cloud detection, applied to Formosat-2, Venμs, Landsat and Sentinel-2 images. Remote sensing environment, 114, 1747–1755.
  • 21. Heuvelink, G.B.M., Kros, J., Reinds, G. J., De Vries, W. 2016. Geostatistical prediction and simulation of European soil property maps. Geoderma Regional, 7, 201–215.
  • 22. Kaihua, L., Shaohui, Xu., Jichun, Wu., Qing, Z. 2013. Spatial estimation of surface soil texture using remote sensing data, Soil Science and Plant Nutrition, 59(4), 488–500.
  • 23. Kar, G., Singh, R., Verma, H.N. 2004. Spatial variability studies of soil hydro-physical properties using GIS for sustainable crop planning of a watershed of eastern India and its testing in a rainfed rice area, Australian Journal of Soil Research, 42(4), 369–379
  • 24. Khabba, S., Jarlan, L., Er-Raki, S., Le Page, M., Ezzahar, J., Boulet, G., Simonneaux, V., Kharrou, H., Hanich, L., Chehbouni, G. 2013. The SudMed program and the Joint International Laboratory TREMA: A decade of water transfer study in the Soil-Plant-Atmosphere system over irrigated crops in semi-arid area. Procedia Environmental Sciences, 19, 524–533.
  • 25. Kirkham, D., Powers, W. L., John, W., Sons, New York, NY, 1972.
  • 26. Lal, R., Stewart, B.A. 2013. Soil management for sustaining ecosystem services. Advances in Soil Science, CRC Press, Boca Raton, Florida, USA, 521–536.
  • 27. Martin, Ć., Shady, H.E.A.A., Ahmed, F.Z. 2020. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Conversion and Management, 210, 112716.
  • 28. Merlin, O., Stefan, V.G., Amazirh, A., Chanzy, A., Ceschia, E., Er Raki, S., Gentine, P., Tallec, T., Ezzahar, J., Bircher, S., Beringer, J., Khabba, S. 2016. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach, Water Resources Research, 52, 3663–3684.
  • 29. Mulder, V.L., De Bruin, S., Schaepman, M.E., Mayr, T.R. 2011. The use of remote sensing in soil and terrain mapping-A review, Geoderma, 162, 1–19.
  • 30. Muller E., Décamps, H. 2000. Modeling soil moisture reflectance. Remote sensing of environment 76, 173–180.
  • 31. Nassah, H., Er-Raki, S., Khabba, S., Fakir, Y., Raibi, F., Merlin O, Mougenot, B. 2017. Evaluation and analysis of deep percolation losses of drip irrigated citrus crops under non-saline and saline conditions in a semi-arid area. Biosystems Engineering: Crop Water Status, 165, 10–24.
  • 32. Nielsen, D., Wendroth, O. 2003. Spatial and Temporal statistics-Sampling Field Soils and Their Vegetation. GeoEcology textbook, Catena-Verlag, Reiskirchen, 614.
  • 33. Noilhan, J., Mahfouf, J.F. 1996. The ISBA land surface parameterisation scheme. global planetary change, 13, 145–159.
  • 34. Oliveira, L.B., Riveiro, M.R., Jacomine, P.K.T., Rodrigues, J.J.V., Marques, F.A. 2002. Funções de pedotransferência para predição da umidade retida a potenciais específicos em solos do Estado de Pernambuco. Revista Brasileira de Ciência do Solo, 26, 315–323.
  • 35. Ouerghemmi, W., Gomez, C., Naceur, S., Lagacherie, P. 2011. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces. Geoderma, 163, 227–237.
  • 36. Puckett, W.E., Dane, J.H., Hajek, B.F. 1985. Physical and Mineralogical Data to Determine Soil Hydraulic Properties. Soil Science Society of America, 49, 831–836.
  • 37.Reichert, J.M., Albuquerque, J.A., Kaiser, D.R., Reinert, D.J., Urach, F.L., Carlesso, R. 2009. Estimation of water retention and availability in soils of rio grande do sul. Revista Brasileira de Ciência do Solo, 33, 1547–1560.
  • 38. Reza S., Baruah U., Sarkar D., Das T. 2010. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some chemical parameters of Dhalai district, Tripura.
  • 39. Saxton, K.E., Rawls, W.J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America, 70, 1569–1578.
  • 40. Shabou M., Mougenot B., Lili Chabaane Z., Walter C., Boulet G., Ben Aissa N., Zribi, M. 2015. Soil clay content mapping using a time series of Landsat TM data in semi-arid lands. Remote Sensing, 7, 6059–6078.
  • 41. Veyan, F.S., Muntadher, A.S., Qahtan, A.M., Al Nuaimy. 2023. Characterization of the Chemical Properties of Deposited Red Clay Soil Using GIS Based Inverse Distance Weighted Method in Kirkuk City, Iraq. Ecological Engineering & Environmental Technology, 24(7), 46–60.
  • 42. Vidhya, L.S., Jijo, J., Soundariya, S., Vishalini, T., Kasinatha Pandian, P. 2015. A Comparison of Soil Texture Distribution and Soil Moisture Mapping of Chennai Coast using Landsat ETM+ and IKONOS Data. Aquatic Procedia, 4, 1452–1460.
  • 43. Vohland, M., Ludwig, M., Thiele-Bruhn, S., Ludwig, B. 2014.Determination of soil properties with visible to nearand mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma, 223–225, 88–96.
  • 44. Wang, D.C., Zhang, G.L., Zhao, M.S., Pan, X.Z., Zhao, Y.G., Li, D.C. 2015. Retrieval and mapping of soil texture based on land surface diurnal temperature range data from MODIS. PLoS ONE, 10(6).
  • 45. Webster, R., Oliver, M.A. 2001. Geostatistics for Environmenntal Scientists. Statistics practice. Willy, Chichester, 265.
  • 46. Wösten, J.H.M., Van genuchten, M.T. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Science Society of America Journal, 52, 1762–1770.
  • 47. Wu, C., Wu, J., Luo, Y., Zhang, L., De Gloria, S.D. 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73, 1202–1208.
  • 48. Zeynal, T.,Yücel, T.,Yahya, U.,Abdul, M.M. 2019. Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering. Intelligent Systems for Environmental Applications, 177, 90–100.
  • 49. Zhang, S.W., Shen, C.Y., Chen, X.Y., Ye, H.C., Huang, Y.F., Lai, S. 2013. Spatial interpolation of soil texture using compositional kriging and regression kriging with consideration of the characteristics of compositional data and environment variables. Journal of Integrative Agriculture, 12(9), 1673–1683.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12699569-dd62-4d1a-b5d9-7b0466619875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.