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Abstract 
Fault diagnosis of an internal combustion engine is proposed herein by means of vibration analysis and a 

comparative analysis of normal operation and induced misfire scenarios. In order to validate previous works 
on misfire with pure gasoline, measurements also included tests performed with ethanol-gasoline fuel blends. 
According to results, changes in the fuel mix seem to have little impact on the performance and behaviour of 
the engine. And additionally, the particular frequency components that allowed differentiation between 
normal and faulty conditions were also present on all the fuel blends tested. Fast Fourier Transform was 
applied to obtain the frequency domain of the signal as a previous step to the subsequent identification 
process based on statistical characteristics extraction. A fuel blend classification method based on the analysis 
of the vibration signals of the engine was studied using envelope, Spike Energy and Peak Value techniques. 
Differentiation was possible with the extraction of the statistical features of the Peak Value spectrum of the 
longitudinal acceleration with a specific filter selection. 
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1. INTRODUCTION 

 
Given importance to predictive maintenance 

within the modern industry, many manufacturing 
plants rely heavily on internal combustion engines. 
Due to its relevance, approaches like condition 
monitoring have gained growing interest, whose 
main indicator, the cylinder pressure [7,11], reveals 
a great deal of information concerning the internal 
combustion process. However, it is an invasive and 
expensive procedure due to additional costs of 
sensors and engine modifications.  In an attempt of 
finding more affordable options, the use of less 
specific type of sensors also has reported good 
performance in techniques such as angular speed 
measurement [5,20], oil analysis [13], surface 
temperature and exhaust emissions [14].  

Most of the studies have focused on acceleration 
measurement [16,17] using sensors, such as 
accelerometers [12], acoustic sensors [2] and knock 
sensors [22], with satisfactory results and wide-
spread deployments in condition monitoring of 
rotating machinery [15], including pumps [1], ball 
bearings [10] and gearboxes [19]. However, they 
have been found to present problems when using 
conventional analysis methods for assessment of 
particular conditions of internal combustion 
engines, since the measured signals are non-
stationary. 

The identification of diverse causes to engine 
block vibration from single point measuring in [22] 

was achieved based on short time Fourier transform 
on the signal, collected with a commercial knock 
sensor. A methodology for simple model of internal 
combustion engine is studied in [18]; the emphasis 
of the paper is placed on the use of the in-cylinder 
parameters (pressure and temperature) and inertial 
loads in the crank-slider mechanism to derive the 
loads that act on all the components of the 
crankslider mechanism as well as the theoretical 
output torque for a given geometrical structure and 
inertial properties. A determination of combustion 
parameters by means of neural networks reported in 
[20] was supported on angular velocity measuring. 
Both indicated and load torques were estimated in 
[4] using the variations in motor speed. An 
estimation of combustion pressure based on the 
processing of the vibration signal is presented in 
[11]. An assessment of the influence of the shape 
variations of the piston bowl on the combustion 
process was given in [21], for this purpose vibration 
data from the engine block was analysed.  

Nevertheless, these researches did not take into 
account the influence of alcohol-gasoline blends of 
fuel on the vibration features. According to [3], 
results from studies with pure gasoline in faulty 
operations, such as a misfire, reported changes in 
the spectral composition of the vibratory signal of 
an engine and the presence of peaks different from 
the combustion frequency. To report on engine 
performance [9] used a chassis dynamometer, at 
different speeds and loads, with a vehicle operating 
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on fuel blends consisting of gasoline and alcohol 
derivatives like ethanol and methanol (E5, E10, M5 
and M10). Their results showed that alcohol-
gasoline blends increased brake specific fuel 
consumption and delayed cylinder gas pressure. 
Attempts to identify fuel blends through vibration 
analysis have been made by [12], who used RMS 
values of filtered acceleration signals to identify 
pure gasoline from blends of ethanol or methanol, 
however, the percentage of the blends could not be 
identified. 

The object of the present study was to assess the 
effects of using different blends of gasoline and 
ethanol as fuel on the spectral composition of the 
vibration signal of an engine, when operating under 
faulty conditions, in this case a simulated misfire. 
In order to provide a robust data base, 
supplementary sensors were employed. Based on 
the results from the present work, it could be stated 
that under misfire conditions pure gasoline and 
gasoline-ethanol blends (such as E8, E20 and E30) 
share the same characteristic frequencies and peaks. 
Exploration of particular frequency bands by means 
of extraction of some statistical features from the 
frequency domain of signals helped to simplify the 
comparative analysis between normal and faulty 
operations. Making use of said engine vibration 
database, additional processing of the signals was 
employed, namely envelope, Peak Value and Spike 
Energy, in order to identify the different fuel 
blends, thus allowing to perform the same spectrum 
comparison and the use of the statistical feature 
extraction. This article describes in details the 
experimental setup, test procedure and a 
comparative analysis of measurements under 
normal conditions, induced misfire and the different 
fuel blends. 
 
2. EXPERIMENTAL SETUP 

 
The experimental test bench for this study 

consisted of a two litre, four cylinders, spark ignited 
internal combustion engine from a truck, and 
mounted on a movable structure that allowed access 
to the components of the motor as well as better 
control of temperatures and leaks which in turn 
simplified condition monitoring.                                          

Vibrations analysed herein correspond to three 
different measured accelerations. These 
accelerometers were installed on three different 
areas depicted in Figure 1 (the first one, with a 
sensitivity of 100mv/g, vertically positioned at the 
top of the engine, the second one, with a sensitivity 
of 10 mv/g, longitudinally positioned in respect to 
the crankshaft axis and mounted close to cylinder 
one, and the last one, with a sensitivity of 10 mv/g, 
mounted in the middle of cylinders two and three 
with a normal direction to the crankshaft axis). 

Said locations and orientations were selected 
based on previous results from different authors. 
For fault detection purposes [3] found that 
transversal and longitudinal vibration signals, with 

sensors located on the engine block, provided good 
results, whereas [8] achieved good results using the 
vertical vibration signal from a sensor on the 
cylinder head. Looking for the effects of different 
injection parameters on vibration signal [6] 
obtained good results using both vertical and 
transversal vibrations, with sensors located on the 
cylinder head and engine block respectively. 
Considering these and several other authors results, 
the vertical, longitudinal and transversal vibration 
signals were measured. 

 Respective data acquisition resorted to two 
equipments mounted on a NI cDAQ 9174 four-slot 
chassis (NI 9232, 3 channel +/-30V analogue input 
module and a NI 9234, 4 channel +/-5V analogue 
input module).  

The cost of accelerometers is around a third of 
the cost of a combustion pressure sensor, and they 
normally have a longer useful life since they can be 
located outside of the engine, which means they 
aren’t exposed to the difficult conditions, of high 
pressures and temperatures, inside the combustion 
chamber. 

 
Fig. 1. Schematic location and orientation of 

the accelerometers on the engine 
 
In order to determinate stable speeds of the 

engine for measurement and reliable conditions for 
the running periods of testing, preliminary test was 
run. 

Since the test bench allowed easy access to the 
engine components, it was possible to test two 
different operational conditions with no load. 1) 
Normal: with four cylinders running and 2) 
Misfiring Piston: Induced misfire of a piston by dis-
connecting the spark plug from cylinder four. The 
comparative analysis between normal and faulty 
operations of the engine was based on an 
experimental testing that focused on different 
variables of speed and fuel blend. Three fuels were 
used during the tests:  
i) E8: Commercially available with eight percent 

ethanol with gasoline 
ii) E20: Blend of gasoline with twenty percent 

ethanol  
iii) E30: Blend of gasoline with thirty percent 

ethanol. 
 And the speed variables were 1500, 1700 and 

2000 rpm. Both operational conditions with no load 
were tested with the speed and fuel blend variables 
aforementioned, three different measurements were 
taken each time with the eight measuring devices. 

Sensors: 
1.Vertical   
2.Longitudinal 
3.Transversal 

22 

33
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Due to technical specification of the data 
acquisition modules, sampling frequency was set at 
51.2 kS/s/channel. Recording time for all the 
measurements was 2 seconds. This means that a 
total of 54 sets of measurements were registered, 
each with a length of 2 seconds, 3 sets at each speed 
tested, with each fuel blend and for each operating 
condition (normal and misfire). For the speeds 
tested, with the length of 2 seconds, more than 50 
full combustion cycles were recorded in each data 
set. 

The process of differentiation between normal 
and faulty conditions was based on data obtained 
from signals in time domain and frequency domain 
transformation of the signal, namely full spectrum 
of acceleration vibrations and subsequent focus on 
areas/zones of special interest due to the presence 
of excited frequencies. This study also resorted to 
the extraction of the following eight statistical 
features applied to all the data obtained from the 
aforementioned signals: Root mean square (RMS), 
Arithmetical mean, Kurtosis, Standard deviation, 
Skewness, Energy, Maximum value, Minimum 
value.  

The classification of the signals according to the 
percentage of ethanol in the blend was studied 
using further processing of the data with envelope, 
Peak Value or Spike Energy techniques to generate 
another set of spectrums to compare and to apply 
the statistical features extraction. 

 
3. RESULTS 

 
Measuring started after installing the pressure 

sensor on the engine heated and maintaining a 
stable operation. Firstly, the normal condition was 
tested for the E8 fuel blend; three different 
measurements were taken for each one of the 
speeds selected. Afterwards, misfire is induced by 
disconnecting the spark plug of the fourth cylinder, 
and the measuring process is repeated for each 
speed. After completing the tests for E8, remaining 
fuel was removed from the tank before introducing 
the next fuel blend. The same measuring procedure 

described above was repeated until obtaining 
complete data from the remaining fuel blends (E20 
and E30). Figure 2 shows an example of the 
measurements with the vertical accelerometer. As 
can be seen, visually the raw acceleration signals 
can’t be differentiated, requiring different options 
like frequency analysis techniques to extract 
characteristics from them. 
3.1. Fault detection 

With assistance of the Fast Fourier Transform, 
signals in the frequency domain could be observed 
for comparative analysis, to identify differences in 
the frequency components of the signals from one 
operation condition to another and also to 
corroborate their presence when changing fuel 
blend.   

 
Fig. 2. Vertical acceleration, normal operating 

conditions on three fuels, second axis, spark detection 
 

Vibrations in the transversal direction were the 
first to be compared, since they usually provide the 
most relevant data. Frequency domain signals for 
the three fuel blends under both normal and faulty 
conditions at 1500 rpm can be seen in Figure 3. 

 

 
Fig. 3. Transversal acceleration, normal and fault operating conditions on three fuels, 1500 rpm 
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In the graphic, two tendencies are recurrent in 
both conditions for all the fuel blends. Firstly, from 
400 to 700 Hz, several smaller peaks can be seen, 
which may be resonant responses from the 
supporting structure due to their repetitive presence 
in almost every measurement. And secondly, the 
prominence of three particular peaks is recurrent: 
namely at 25 Hz, 50 Hz, and 100 Hz. As expected 
for the motor used (four cylinder, four strokes), 
under normal conditions at 1500 rpm combustion 
frequency (CF) was reported at 50 Hz but oddly the 
peak at 25 Hz corresponding to revolution or speed 
frequency (RF) also appeared in CF peak is the 
only one expected to appear and the peak at 100 Hz 
may be considered its harmonic, hence the presence 
of RF peak should have stemmed from some 
unbalance and differences in the support of the 
mounting. 

From faulty conditions, the two tendencies 
described above kept taking place, however a 
couple of new facts provided enough distinction 
between faulty and normal conditions. Firstly, RF 

peak at 25 Hz is reported to be the highest. And 
secondly, under faulty conditions there was a 
constant presence of another three peaks at 37.5 Hz, 
62.5 Hz and 75 Hz. Such frequencies may also be 
considered as 0.5 CF, 0.75 CF, 1.25 CF and 1.5 CF 
respectively. It is worth of noting that these 
distinctive and discrepant tendencies of normal and 
faulty conditions took place with all fuel blends. 
Results with similar behaviours were obtained for 
tests run at 1700 rpm and 2000 rpm.  

Neither the longitudinal nor the vertical 
acceleration measurements reveal any significant 
discrepancy between faulty and normal conditions. 
The results obtained with vertical accelerometers 
reported in Figure 4 are in accordance with [4]: On 
both operational modes, CF peaks took place very 
clearly and the only differentiating elements are 
minor increases of the small RF peaks for the 
instances of induced misfire. Just like in the 
previous measurements, all the tested fuel blends 
repeatedly shared tendencies. 

 

 
Fig. 4. Vertical acceleration, normal and fault operating conditions on three fuels, 1500 rpm 

 
Since the first comparisons based on frequency 

domain transformations revealed that distinguishing 
elements between operating modes exhibited 
greater salience at frequencies under each one of 
the CF peaks, the analysis of statistical 
characteristics, extracted from the frequency 
spectrum, focused on such lower frequencies. The 
first band frequency selected for statistical 
characteristics extraction corresponded to the zone 
0.6-0.9 CF. Analysing this frequency from 
transversal measurements, only one (minimum 
value) out of the eight statistical properties did not 
report discrepancies that allowed to differentiate 
between normal and faulty conditions. 

The constant tendency of the seven 
differentiating properties was higher values under 
faulty conditions. Main values and Standard 
Deviations were the ones that provided a better 
distinction, i.e. a greater gap between values of the 
two conditions tested.   Maximum values (Figure 5) 
serve as an example to illustrate the satisfactory 
distinction obtained by means of statistical 
characteristics extraction from transversal 

acceleration measurements at the aforementioned 
frequency band for all the speed and fuel blends 
variables of this study. 

Further analysis on transversal acceleration at 
the wider frequency band 0 CF to 0.9 CF reported 
that 5 statistical characteristics (maximum value, 
RMS, mean value, standard deviation and energy) 
allowed clear distinction between conditions for the 
three fuel blends at 1500 and 1700 rpm, however 
differentiation didn’t take place at all from 
measurements at 2000 rpm.  

The remaining three characteristics (Kurtosis, 
Skewness, and Minimum value) exhibited 
inconsistency in their results, whether they didn’t 
report differences whatsoever or only for isolated 
conditions. 

Despite full spectrum readings of vertical 
vibrations reported an overall similarity 
unpromising for signs of differentiating elements 
between operational modes, the corresponding 
statistical characteristics surprisingly allowed some 
distinctions but with inconsistency. However, 
maximum value was the only statistical 
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characteristic that showed a tendency for 
differentiation of normal and faulty conditions at 
the 0-0.9 CF frequency band from vertical 
vibrations. Such a tendency was constant for all the 
speed and fuel blends variables of the study as 
shown on Figure 6.  

 

 
Fig. 5. Transversal acceleration, normal and 

fault operating conditions on three fuels, 
maximum value, 0.6-0.9 CF 

 

 
Fig. 6. Vertical acceleration, normal and fault 

operating conditions on three fuels, maxi-
mum value, 0-0.9 CF 

 

A tendency can be seen where lower maximum 
values take place in normal conditions in 
comparison to those for conditions with induced 
misfire, although the differences found were not as 
clear as with the transversal acceleration. None of 
the other statistical characteristics provided results 
as reliable as those from maximum values to assist 
in the differentiation process between operation 
ones.  

Yet again, longitudinal vibrations signal didn’t 
yield any statistical characteristic capable of 
providing constant and reliable distinction between 
the operation modes tested herein. 

Frequency domain analysis reported some 
excited frequencies during normal operation, most 
of them correspond to the combustion frequency 
(CF) and its harmonics, a foreseen fact due to 
typical characteristics of a spark ignited internal 
combustion engine. The equipment used herein was 
a four-cylinder engine, whose CF is known to be 
two times the revolution frequency (RF). The latter 
also appeared in the analysis. As opposed to 
literature reporting the largest magnitudes for CF 
peaks on normal conditions, normal conditions 
tested at 1500 rpm (Figure 3) revealed RF peaks to 
be the highest, which in turn can be explained with 
a test bench problem stemmed from unbalance of 
the pieces. Specially, the inertia added to the system 
by the dynamometer attached to the engine. 

In parallel with the above analysis, the non-
harmonic nature of readings from faulty conditions 
was confirmed with the presence of 0.75 CF, 1.25 
CF and 1.5 CF peaks for all the speed and fuel 
blend variables of the study, such peaks never 
appeared on normal conditions measurements. That 
anharmonicity was also a foreseen fact due to one 
idle cylinder led to three combustions in a two 
cycle period. 

This work extends the scope of previous studies 
by including different fuel mixes and thus more 
scenarios for assessment. Extra amount of oxygen 
provided by the addition of ethanol changes the 
characteristics of the combustion process 
particularly in respect to speed and power of the 
combustion. However, the same excited frequencies 
reported in literature with pure gasoline operations 
were also found in the three ethanol-gasoline blends 
tested herein, despite that the engine uses a 
carburettor that does not compensate for the 
conditions of the fuel. 
3.2. Fuel blend detection 

Considering the importance of internal 
combustion engines in the industry and the 
increasing use of ethanol-gasoline fuel blends, it is 
important to not only perform fault detection, but it 
is also of interest to identify the fuel blend being 
used. Industrial engines normally use carburettors 
and other relatively simple technology in order to 
provide reliable performance on tough conditions 
for long operation hours, making it important to 
recognise the fuel blend to perform adequate set up 
and maintenance of the engine components. 
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The first part of this test was to check the results 
from the fault detection analysis for differences in 
the signals from the different fuel blends. 

A simple Fast Fourier Transform applied to all 
the signals did not reveal differences between the 
fuel blends in any of the recorded data from any of 
the accelerometers, an example of this can be seen 
in Figure 3 and Figure 4. Neither different 
frequency peaks nor differences in the amplitude of 
the spectrum components allowed classification, 
because they were inconsistent in the different 
rotational speeds and even in the different 
measurements performed at the same operating 
conditions. 

The statistical features were also checked, 
reaching the same results as no differentiation was 
possible between the fuel blend signals, in any of 
the accelerometers, in any of the frequency bands 
tested.  

In order to extract more information from the 
signals, further processing was required. The 
proposed method for fault detection was based on 
the Fast Fourier Transform of the signal and the 
identification of significant frequencies related to 
its operation (Like CF and RF). These frequencies 
are normally very low. But a look at the full 
spectrum of the signal reveals that there is a great 
component in higher frequencies above 3 kHz for 
all tested conditions, for the accelerometers located 
in the longitudinal and transversal directions. An 
example of the frequency spectrum up to 10 kHz 
for E30 at 2000 rpm is presented in Figure 7.  

 

 
Fig. 7. Frequency spectrum, normal operating 

condition, E30, 2000 rpm 
 
Given the acquisition frequency of the database, 

a maximum of 25,6 kHz could be studied, but no 
signal had significant content beyond 10 kHz. 

To take advantage of this behaviour, three 
different techniques that operate on high 
frequencies were applied, namely: Envelope, Peak 
Value and Spike Energy. These techniques are 
normally used on ball bearing high frequency 
vibration analysis, looking for stress waves. We 

found some singular interest in them because they 
are specially used in high frequency features 
detection and we are presuming that pressure wave 
energy can be identified from high level spectrum 
frequencies, therefore we have tuned their 
characteristics to better suit the conditions of the 
collected signals, applying them to slightly lower 
frequency spectrums than usual. All these 
techniques operate first filtering the signal to 
eliminate lower frequencies, then they process it to 
generate a new signal, which, in the end is 
transformed to the frequency domain to produce a 
spectrum that can provide means for differentiation, 
in the same way as with the fault classification, that 
is, first a visual comparison and then a statistical 
feature extraction.  

Different types of filters and frequency limits 
were selected for testing based on the behaviour of 
the full spectrum of the original signals (Figure 7), 
to make sure that the frequency bands with more 
content were studied, and making use of the fact 
that the filtering selection on these methods relies 
heavily on operator experience. Those filters were 
Butter type: high-pass filters at 1000, 3000 and 
5000 Hz, and band-pass filters at 2000-5000, 3000-
6000, 5000-7000 and 5000-10000 Hz.  

Envelope analysis was the first to be tested, an 
example of the results at 1700 rpm for the band-
pass filter at 5000-7000 Hz, from the longitudinal 
accelerometer are shown on Figure 8. 

 

 
Fig. 8. Envelope spectrum, longitudinal 

acceleration, 1700 rpm, band-pass filter at 
5000-7000 Hz 

 
The results seen in Figure 8 show that the same 

frequency components are excited when using the 
different fuel blends on the envelope spectrum. The 
same happened on all the other rotational speeds 
and all the other accelerometers. Now considering 
the peaks magnitude, apparent differences can be 
seen, for example at 14 or 28 Hz, that can 
differentiate fuel blends, but this differences were 
not present at the other rotational speeds, or even 
when comparing the other measurements done at 
the same conditions. This kind of behaviour 
repeated with every filter type and filter limit 
tested. These results were further ratified with the 
statistical feature extraction, where no clear 
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differentiation could be made, with inconsistent 
results that worked only on specific conditions, like 
only at one speed. 

Next, Spike Energy was tested, an example of 
the results at 1500 rpm for the high-pass filter at 
5000 Hz, from the vertical accelerometer are shown 
on Figure 9. In the Spike Energy spectrum, once 
again, the same frequency components were excited 
with all the fuel blends, and again, sporadic 
differences in magnitudes were present that did not 
appear at all speeds or when comparing the 
different measurements done at the same operating 
conditions. This kind of behaviour was present in 
the Spike Energy spectrum from all sensors in all 
filter types and filter frequency limits tested. And, 
once more, it could be verified with the results from 
the statistical feature extraction. 

 

 
Fig. 9. Spike Energy spectrum, vertical 

acceleration, 1500 rpm, high-pass filter at 
5000 Hz 

 
Finally, Peak Value was applied to the signals 

and the spectrums were obtained. An example of 
the results at 2000 rpm for the band-pass filter at 
5000-7000 Hz, from the longitudinal acceleration 
are presented on Figure 10. 

 

 
 Fig. 10. Peak Value spectrum, longitudinal 
acceleration, 2000 rpm, band-pass filter at 

5000-7000 Hz. 
 

The results from the Peak Value analysis were 
mixed. Visual comparison of the spectrums 
revealed a behaviour similar to the ones from 
envelope and Spike Energy in that the same 
frequency components were excited in all the fuel 

blends. When inspecting the differences in 
magnitudes for the peaks, the transversal and 
vertical vibration signals provided results that 
behaved similarly to the ones from envelope and 
Spike Energy, in that they were inconsistent even 
after extracting the statistical features. On the other 
hand, longitudinal vibrations did show differences 
in magnitudes that were not easy to identify 
visually, but allowed, on certain filter conditions, to 
classify the signals from the different fuel blends 
with the statistical features extracted. The filters 
that worked were high-pass at 5000 Hz and band-
pass at 5000-7000 Hz and 5000-10000 Hz, with the 
features RMS, energy and mean applied to the 
frequency spectrums of each of the data sets for 
each fuel blend and speed. An example of the 
results is presented on Figure 11. 

 

 
Fig. 11. Mean of the Peak Value, longitudinal 

acceleration, three fuels, band-pass filter at 
5000-7000 Hz 

 
As shown on Figure 11, the mean of the 

frequency spectrum for the Peak Value data, with a 
band-pass filter at 5000-7000 Hz, shows enough 
differentiation between fuel blend signals to allow 
classification of them. As can be seen, the mean 
characteristic was extracted from each of the 
spectrums from the Peak Value analysis for each of 
the 3 data sets taken for each setup. The means of 
the Peak Value spectrums for the lowest fuel blend 
(E8) is the highest, and the means lower with the 
increase in percentage of alcohol, reaching the 
lowest values with the highest blend tested (E30). 
The same behaviour was present in the three 
mentioned statistical features (RMS, mean and 
energy) extracted from the Peak Value spectrums of 
the longitudinal vibration signal, for the three 
mentioned filter types that worked (high-pass at 
5000 Hz, band-pass at 5000-7000 Hz and 5000-
10000 Hz), that means higher values for the lowest 
fuel blends. None of the other statistical features 
extracted provided consistent means for 
classification of the fuel blends. 

Considering that the statistical features that 
provided differentiation were those of energy or 
related heavily to energy (RMS and mean) of the 
spectrum from the Peak Value analysis, the lower 
results for the higher fuel blends can be attributed 
to the differences in combustion speed and cyclic 
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variability produced by the increase in ethanol 
percentage. A higher concentration of oxygen in the 
fuel mix, increased flame propagation speed and 
cyclic variability produce a vibration that excites 
the same frequencies, but overall on a lower 
magnitude (a more complete combustion). Since 
these differences in combustion are very subtle, it 
could be that the interaction with the engine block 
was better captured by the longitudinal 
accelerometer, due to its location in the 4-cylinder 
engine used in this study (farthest away from most 
cylinders, with a lot of material in-between), since 
the Peak Value technique is meant to analyse stress 
waves from the impacted metal. It would be 
interesting to further test this methodology on 
different engines with different configurations. 

  
4. CONCLUSIONS 

 
A time frequency transformation focused on 

finding frequency components able to differentiate 
normal from induced misfired condition of an 
internal-combustion, spark-ignited engine, was 
applied on three measured accelerations (vertical, 
transversal and longitudinal). Induced misfire was 
achieved by taking off spark plug number four. 
Besides the measurements at three different speeds, 
the study also expands the research scope by 
including three gasoline-ethanol fuel blends (E8, 
E20 and E30). Additional sensors were used for 
future investigations. 

The results herein coincided with the literature, 
to the extent that the expected presence of three 
peaks (referred to as 0.75, 1.25, and 1.5 CF) in the 
transversal direction signal for the induced misfire 
condition, provided differentiation between the two 
operations tested herein, in all tested fuel blends.  

Eight statistical characteristics were extracted 
from the signal in the time domain and on several 
frequency domain bands, aiming to simplify the 
differentiation process. 7 out of the eight statistical 
characteristics extracted from the spectrum of the 
transversal vibrations in the frequency band 0.6-0.9 
CF, provided a clear distinction between 
operational conditions for all the variables tested. 

In the case of vertical vibrations signals, the 
only statistical property that shows a tendency to 
differentiation between operational conditions for 
all the variables tested was the maximum value in 
the frequency band 0-0.9 CF, but it isn’t as clear as 
the differences shown on transversal acceleration. 
Data from longitudinal vibrations only were able to 
provide isolated distinctions between conditions 
since inconsistency was reported throughout the 
variables of fuel blends and speed during the 
analysis. 

A time frequency transformation focused on 
differentiating the signals from an engine operating 
on three different gasoline-ethanol fuel blends was 
performed. Normal FFT analysis of the signals 
provided no significant differences between blends, 
neither in excited frequency nor in the magnitude of 

the spectrum components, in any of the 
accelerations measured. Extraction of statistical 
features corroborated these results. 

Further processing of the signals was carried out 
with three techniques that focus on high frequency 
analysis: Envelope, Spike Energy and Peak Value. 
Several types and limits of filters were selected to 
be used on said techniques based on the results of 
the full spectrum of the original signal. 

Envelope and Spike Energy techniques didn’t 
provide significant difference for the fuel blend 
classification neither in excited frequency 
components nor in the magnitude of the spectrum 
components, in any of the accelerometer signals, in 
any of the filter configurations tested. Extraction of 
statistical features corroborated these results. 

Peak Value analysis of the signals didn’t show 
characteristic frequencies to identify fuel blends in 
any of the accelerometers, in any of the filter 
configurations. However, differences in magnitude 
of the frequency spectrum were present, with some 
filters. Fuel blend classification was possible with 
the extraction of the statistical features mean, RMS 
and energy in the spectrum from the Peak Value of 
the longitudinal accelerometer, using the filters: 
high-pass at 5000 Hz, band-pass at 5000-7000 Hz 
and 5000-10000 Hz. Results that can be related to 
stress waves generated differently according to the 
combustion characteristics of the blend. No other 
signal or statistical feature provided satisfactory 
results. 
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