PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elemental composition and origin of PM10 in a fire station in Poland. Real-time results from the XRF analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the first results of the metal in particulate matter PM10 analysis and source apportionment in one of the fire station garages in Poland. The study’s novelty includes the high temporal resolution of the elemental composition of PM-bound metals since the gamma-ray fluorescence spectrometer with the high temporal resolution was used in the study. The concentrations of PM10 were measured at the same time using the method of beta-ray attenuation. The concertations of PM10 and PM-bound metals were analyzed with a temporal resolution of 4 h. To identify the source apportionment of metals, three commonly used models were applied: principal component analysis (PCA), EPA UNMIX, and EPA PMF (positive matrix factorization). The concentrations of the investigated metals have high temporal variations while the concentrations of PM10 were low in the garage. The enrichment of PM10 was very high or high, especially in sulfur, zinc, arsenic, nickel, cadmium, and lead. PCA analysis, as well as UNMIX and PMF, showed a high impact of factors related to sulfur on the variability. It showed the impact of combustion, including combustion of liquid fuels, in fire engines may have a crucial impact on air pollution in the fire station. The PMF analysis allowed us also to identify factors responsible for external anthropogenic emissions on concentrations inside the garage. Other identified sources of PM10 and PM10-bound elements are mineral dust, and road dust related to non-exhaust emission, originating inside the firehouse (resuspension and abrasion) as well as from outside.
Rocznik
Strony
57--72
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Department of Environmental Protection, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
  • The Main School of Fire Service, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
  • Department of Environmental Protection, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] FENT K.W., EVANS D.E., BABIK K., STRILEY C., BERTKE S., KERBER S., SMITH D., HORN G.P., Airborne contaminants during controlled residential fires, J. Occup. Environ. Hyg., 2018, 15 (5), 399–412. DOI: 10.1080/15459624.2018.1445260.
  • [2] ALHARBI B.H., PASHA M.J., AL-SHAMSI M.A.S., Firefighter exposures to organic and inorganic gas emissions in emergency residential and industrial fires, Sci. Total Environ., 2021, 770, 1–9. DOI: 10.1016/j.scitotenv.2021.145332.
  • [3] ROGULA-KOZŁOWSKA W., BRALEWSKA K., ROGULA-KOPIEC P., MAKOWSKI R., MAJDER-ŁOPATKA M., ŁUKAWSKI A., BRANDYK A., MAJEWSKI G., Respirable particles and polycyclic aromatic hydrocarbons at two Polish fire stations, Build. Environ., 2020, 184, 107255. DOI: 10.1016/j.buildenv.2020.107255.
  • [4] BROWN F.R., WHITEHEAD T.P., PARK J.S., METAYER C., PETREAS M.X., Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California, Environ. Res., 2014, 135, 9–14. DOI: 10.1016/j.envres.2014.08.022.
  • [5] BOTT R.C., KIRK K.M., LOGAN M.B., REID D.A., Diesel particulate matter and polycyclic aromatic hydrocarbons in fire stations, Environ. Sci. Proc. Impacts, 2017, 19 10, 1320–1326. DOI: 10.1039/C7EM00291B.
  • [6] LEE S., LIU W., WANG Y., RUSSELL A.G., EDGERTON E.S., Source apportionment of PM2.5. Comparing PMF and CMB results for four ambient monitoring sites in the Southeastern United States, Atm. Environ., 2008, 42 (18), 4126–4137. DOI: 10.1016/j.atmosenv.2008.01.025.
  • [7] LARSEN R.K., BAKER J.E., Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere. A comparison of three methods, Environ. Sci. Technol., 2003, 37 (9), 1873–1881. DOI: 10.1021/es0206184.
  • [8] HENRY R.C., UNMIX Version 2 Manual, Prepared for US Environment Protection Agency, West Hills, CA, 2000, 536.
  • [9] LEE J.-H., LIM J.-M., KIM K.-H., CHUNG Y.S., LEE K.-Y., Trace element levels of aerosols at an urban area of Korea by instrumental neutron activation analysis, J. Radioanal. Nucl. Chem., 2003, 256 (3), 553–560. DOI: 10.1023/A:1024520320578.
  • [10] PAATERO P., TAPPER U., Positive matrix factorization. A non‐negative factor model with optimal utilization of error estimates of data values, Environ., 1994. DOI: 10.1002/env.3170050203.
  • [11] HU S., MCDONALD R., MARTUZEVICIUS D., BISWAS P., GRINSHPUN S.A., KELLEY A., REPONEN T., LOCKEY J., LEMASTERS G., UNMIX modeling of ambient PM2.5 near an interstate highway in Cincinnati, OH, USA, Atm. Environ., 1994, 2006, 40 (S2), 378–395. DOI: 10.1016/j.atmosenv.2006.02.038.
  • [12] WASKOM M., Seaborn. Statistical data visualization, J. Open Source Softw., 2021, 6 (60), 3021. DOI: 10.21105/joss.03021.
  • [13] BARBIERI M., The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination, J. Geol. Geophys., 2016, 5 (1), 237. DOI: 10.4172/2381-8719.1000237.
  • [14] WEDEPOHL H.K., The composition of the continental crust, Geochim. Cosmochim. Acta, 1995, 56 (7), 1217–1232. DOI: 10.1016/0016-7037(95)00038-2.
  • [15] BERTHOLD M.R., CEBRON N., DILL F., GABRIEL T.R., KÖTTER T., MEINL T., OHL P., SIEB C., WISWEDEL B., KNIME. The Konstanz Information Miner BT. Data Analysis, Machine Learning and Applications, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (Eds.), Springer, Berlin 2008, 319–326.
  • [16] USEPA. Unmix 6.0 Fundamentals & User Guide, 2007.
  • [17] NORRIS G., DUVALL R., BROWN S., BAI S., EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, EPA/600/R-14/108., Environment Protection Agency, Washington, DC, EPA /600/R-14/108 (NTIS PB2015-105147), 2014.
  • [18] PEKNEY N.J., DAVIDSON C.I., ROBINSON A., ZHOU L., HOPKE P., EATOUGH D., ROGGE W.F., Major source categories for PM2.5 in Pittsburgh using PMF and UNMIX, Aerosol Sci. Technol., 2006, 40 (10), 910–924. DOI: 10.1080/02786820500380271.
  • [19] MAJEWSKI G., ROGULA-KOZŁOWSKA W., CZECHOWSKI P., BADYDA A., BRANDYK A., The impact of selected parameters on visibility. First results from a long-term campaign in Warsaw, Poland, Atmosphere, 2015, 6 (8), 1154–1174. DOI: 10.3390/atmos6081154.
  • [20] FARIDI S., YOUSEFIAN F., ROOSTAEI V., HARRISON R.M., AZIMI F., NIAZI S., NADDAFI K., MOMENIHA F., MALKAWI M., MOH’D SAFI H.A., RAD M.K, HASSANVAND M.S., Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries. A systematic review and recommendations for good practice, Environ. Poll., 2022, 310, 119889. DOI: 10.1016/j.envpol.2022.119889.
  • [21] WANG Y.-X., FENG W., ZENG Q., SUN Y., WANG P., YOU L., YANG P., HUANG Z., YU S.L., LU W.-Q., Variability of metal levels in spot, first morning, and 24-hour urine samples over a 3-month period in healthy adult Chinese men, Environ, Health Persp., 2016, 124 (4), 468–476. DOI: 10.1289/ehp.1409551.
  • [22] DEMIRBAS A., ALIDRISI H., BALUBAID M.A., API gravity, sulfur content, and desulfurization of crude oil, Pet. Sci. Technol., 2015, 33 (1), 93–101. DOI: 10.1080/10916466.2014.950383.
  • [23] FUSSELL J.C., FRANKLIN M., GREEN D.C., GUSTAFSSON M., HARRISON R.M., HICKS W., KELLY J.F., KISHTA F., MILLER M.R., MUDWAY I.S., OROUMIEYH F., SELLEY L., WANG M., ZHU Y., A review of road traffic-derived non-exhaust particles. Emissions, physicochemical characteristics, health risks, and mitigation measures, Environ. Sci. Technol., 2022, 56 (11), 6813–6835. DOI: 10.1021/acs.est.2c01072.
  • [24] ALMEIDA-SILVA M., FARIA T., SARAGA D., MAGGOS T., WOLTERBEEK H.T., ALMEIDA S.M., Source apportionment of indoor PM10 in Elderly Care Centre, Environ. Sci. Poll. Res. Int., 2016, 23 (8), 7814–7827. DOI: 10.1007/s11356-015-5937-x.
  • [25] PERNIGOTTI D., BELIS C.A., SPANÓ L., SPECIEUROPE: The European database for PM source pro-files, Atm. Poll. Res., 2016. DOI: 10.1016/j.apr.2015.10.007.
  • [26] QUEROL X., FERNÁNDEZ-TURIEL J., LÓPEZ-SOLER A., Trace elements in coal and their behaviour during combustion in a large power station, Fuel, 1995, 74 (3), 331–343. DOI: 10.1016/0016-2361(95)93464-O.
  • [27] DIAPOULI E., CHALOULAKOU A., KOUTRAKIS P., Estimating the concentration of indoor particles of outdoor origin. A review, J. Air Waste Manage. Assoc., 2013, 63 (10), 1113–1129. DOI: 10.1080/10962247.2013.791649.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12646a55-b6ca-4033-bdba-3db7e63fbf02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.