PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological Monitoring of Medicinal Plants Populations under Different Ecological-Cenotic and Anthropogenic Environmental Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytocoenotic conditions of growth and anthropogenic management of natural phytocoenoses have a significant impact on the population characteristics and stocks/reserves of medicinal plant raw material. The article presents the results of the peculiarities of the response of spatial, dimensional, ontogenetic and vitality structures of populations of the official species - Hypericum perforatum L., and establishes a dependence that allows predicting the reserves of medicinal plant material Hyperci herba by the height of individuals. With the aim of forecasting the dynamics of the resource potential of this species, geobotanical descriptions were conducted, and classical population methods were applied: morphometric, ontogenetic and vitality analyses, as well as a number of statistical methods (correlation, factorial, dispersion, and regression analyses). It was established that the population density of H. perforatum averaged from 3 to 12, but sometimes reached 20 to 30 individuals/m2 , with the maximum observed under conditions of random mowing. The minimum indicators of the vegetative sphere: height of generative individuals (h, cm), aboveground phytomass (W, g), photosynthetic effort (LWR, %) were noted in populations used as hayfields, pastures, and in agrophytocenosis. The maximum indicators were in populations that were generally or almost unaffected by anthropogenic influences. Research on the dynamics of the main morphological parameters showed that while the maximum and minimum parameters of vegetative structures differed by approximately 2.1 times, generative parameters differed by 4.6 times. Statistically significant differences were observed among H. perforatum populations in terms of the number, mass of generative organs, and the reproductive effort of plants. A statistically significant correlation was found between plant height (h, cm) and the productivity of aboveground dry phytomass, which forms the herbal raw materials (HRM, g). It is described by the Equation: HRM = 0.167h – 3.28. In hayfield-pasture areas and in agrophytocenosis, up to 60–75% of individuals were of small size and low vitality, their contribution to the production of medicinal plant raw material was insignificant. Overall, the conducted research showed that Hypericum perforatum L. exhibited significant phytocenotic diversity, which depended on a complex of ecologo-cenotic factors and types of anthropogenic management.
Twórcy
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy State University, 116, Kharkivska Str., Sumy, 40007, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, 15, Heroiv Oborony Str., Kyiv, 03041, Ukraine
  • Sumy State Pedagogical University named after A.S. Makarenko, 87, Romenska Str., Sumy, 40002, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
  • Sumy National Agrarian University, 160, H. Kondratieva Str., Sumy, 40021, Ukraine
Bibliografia
  • 1. Agapouda A., Booker A., Kiss T., Hohmann J., Heinrich M., Csupor D. 2019. Quality control of Hypericum perforatum L. analytical challenges and recent progress. The Journal of Pharmacy and Pharmacology, 71(1), 15–37. doi.org/10.1111/jphp.12711
  • 2. Alekseiev I.S. 2013. Complete atlas of medicinal plants. Gloria Trade, Donetsk, 195.
  • 3. Anjum A., Mohammad F., Bilal A., Usama A., Merajul H., Asim A.K. 2022. Ethno pharmacology, phytochemical analysis, safety profile, prophylactic aspects, and therapeutic potential of Asarum europaeum L. in Unani medicine: An evidence–based appraisal. Phytomedicine Plus, 2(2), 100226. doi.org/10.1016/j.phyplu.2022.100226
  • 4. Avasiloaiei D.I., Calara M., Brezeanu P.M., Murariu O.C., Brezeanu C. 2023. On the future perspectives of some medicinal plants within Lamiaceae botanic family regarding their comprehensive properties and resistance against biotic and abiotic stresses. Genes, 14(5), 955. doi.org/10.3390/genes14050955
  • 5. Begmatova M., Fayzullaev U., Urolova S., Makhmadiyarova Y., Sunnatillaeva S. 2024. technology of cultivation of medicinal preparation Hуperiсum perfоratum L.. E3S Web of Conferences, 510(6), 01020. doi.org/10.1051/e3sconf/202451001020
  • 6. Bondarieva L.M., Kyrylchuk K.S. 2023. Structure of meadow plant populations in flood meadows of the forest–step zone under grazing and mowing conditions. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 51(1), 3–13. doi.org/10.32782/agrobio.2023.1.1
  • 7. Bondarieva L.M., Kyrylchuk K.S., Skliar V.H., Tikhonova O.M., Zhatova H.O., Bashtovyi M.G. 2019. Population dynamics of the typical meadow species in the conditions of pasture digression in flooded meadows. Ukrainian Journal of Ecology, 9(2), 204–211.
  • 8. Brankiewicz A., Trzos S., Mrozek M., Opydo M., Szostak E., Dziurka M., Tuleja M., Loboda A. & Pochec E. 2023. Cytotoxic and antioxidant activity of Hypericum perforatum L. extracts against human melanoma cells from different stages of cancer progression, cultured under normoxia and hypoxia. Molecules, 28(3), 1509. doi.org/10.3390/molecules28031509
  • 9. Chusova O., Borovyk D., Budzhak V., Chorney I., Dziuba T., Iemelianova S., Kucher O., Moysiyenko I., Tokariuk A., Vasheniak I., Vynokurov D., Boyko M., Khodosovtsev A., Kuzemko A. 2022. Protected species in grassland habitats of Ukraine. Ukrainian Botanical Journal, 79, 290–307. doi.org/10.15407/ukrbotj79.05.290
  • 10. Cirak C., Seyis F., Ozcan A., Yurteri E. 2022. Ontogenetic changes in phenolic contents and volatile composition of Hypericum androsaemum and Hypericum xylosteifolium. Biochemical Systematics and Ecology, 102, 104429. doi.org/10.1016/j.bse.2022.104429
  • 11. Didukh Ya.P. 2018. Biotope as a system: structure, dynamics, and ecosystem services. Ukrainian Botanical Journal, 75(5), 405–420. doi.org/10.15407/ukrbotj75.05.405
  • 12. Dubyna D., Kordyum E. 2015. Ontogenesis plasticity of vascular plants: molecular, cellular, population and cenotic aspects. Visnyk NAN Ukrainy, 7, 32–40. doi.org/10.15407/visn2015.07.032
  • 13. European Pharmacopoeia. 2011. 7th eds. Council of Europe, Strasbourg Cedex, EU.
  • 14. Goncharenko I., Solomakha I., Shevchyk V., Dvirna T., Tymochko I., Solomakha V. 2022. A phytoindicational assessment of the vegetation of afforestation belts in the Middle Dnipro Region, Ukraine. Environmental & Socio-economic Studies, 10(2) 30–39. doi.org/10.2478/environ–2022–0009
  • 15. Grime J.P. 1979. Plant strategies and vegetation processes. John Wiley & Sons, Ltd., New York, 222.
  • 16. Heidari Sureshjani Z., Karimzadeh G., Rashidi Monfared S. 2022. The first in vitro study of seed dormancy breakage in Iranian populations of St. John’s Wort (Hypericum perforatum) with different geographical origins. Iranian Journal of Seed Research, 9(1), 59–74. doi.org/10.52547/yujs.9.1.59
  • 17. Hunt R. 1978. Plant growth analysis. Arnold, London, 37.
  • 18. Jagodzinski M.A., Dyderski M.K., Rawlik K., Katna B. 2016. Seasonal variability of biomass, total leaf area and specific leaf area of forest understory herbs reflects their life strategies. Forest Ecology and Management, 374, 71–81. doi.org/10.1016/j.foreco.2016.04.050
  • 19. Karbivska U., Butenko A., Kozak M., Filon V., Bahorka M., Yurchenko N., Pshychenko, O., Kyrylchuk, K., Kharchenko, S., Kovalenko I. 2023. Dynamics of productivity of leguminous plant groups during long-term use on different nutritional backgrounds. Journal of Ecological Engineering, 24(6), 190–196. doi.org/10.12911/22998993/162778
  • 20. Karbivska U., Kurgak V., Gamayunova V., Butenko A., Malynka L., Kovalenko I., Onychko V., Masyk I., Chyrva A., Zakharchenko E., Tkachenko O. & Pshychenko O. 2020. Productivity and quality of diverse ripe pasture grass fodder depends on the method of soil cultivation. Acta Agrobotanica, 73(3), 1–11. doi.org/10.5586/aa.7334
  • 21. Kaundal M., Sharma R., Kumar R. 2021. Elevated CO2 and temperature effect on growth, phenology, biomass and hypericin content of Hypericum perforatum L. in the western Himalaya. Plant Physiology Reports, 26(1), 116–127. doi.org/10.1007/s40502–021–00571–7
  • 22. Kovalenko I., Butenko S., Zhezhkun A., Porokhniach I., Abduraimov O., Klymenko H. 2022. Trends in the transformation of plant ontogenesis under global climate warming. Journal of Agricultural Science, 33(2), 410–417. doi.org/10.15159/jas.22.27
  • 23. Kovalenko I., Skliar Iu., Klymenko H., Kovalenko N. 2019. Vitality structure of the populations of vegetative motile plants of forest ecosystems of the North–East of Ukraine. The Open Agriculture Journal, 13, 125–132. doi.org/10.2174/1874331501913010125
  • 24. Kovalenko I.M., Klymenko G.O., Melnychuk S.D., Skliar Iu.L., Melnyk O.S., Kyrylchuk K.S., Bondarieva L.M., Zubtsova I.V., Yaroshchuk R.A., Zherdetska S.V. 2020. Potential adaptation of Ginkgo biloba – comparative analysis of plants from China and Ukraine. Ukrainian Journal of Ecology, 10(6), 329–337. doi.org/10.15421/2020_301
  • 25. Kuzemko A., Budzhak V., Vasheniak I., Vynokurov D., Didukh Ya., Dziuba T., Iemelianova S., Kucher O., Moysiyenko I., Tokaryuk A., Khodosovtsev A., Chorney I., Chusova O., Shapoval V., Borovyk D., Balashov I., Brusentsova N., Vasyliuk O., Viter S., Rusin M. 2023. Atlas of Grassland Habitats of Ukraine. Druk Art, Chernivtsi, 244.
  • 26. Kuzemko A.A., Kozyr M.S. 2011. Syntaxonomic changes of the meadow vegetation on the Seim River floodplain in Ukraine. Ukrainian Botanical Journal, 68(2), 216–226.
  • 27. Kvet J., Ondok J., Necas J., Jarvis P. 1971. Methods of Growth Analysis. Plant Photosynthetic Production. Manual of Methods, Dr W Junk, Hague, 343–391.
  • 28. Kwiecien I., Miceli N., Kędzia E., Cavo E., Taviano M., Beerhues L. & Ekiert H. 2023. Different Types of Hypericum perforatum cvs.(Elixir, Helos, Topas) In Vitro Cultures: A Rich Source of Bioactive Metabolites and Biological Activities of Biomass Extracts. Molecules, 28(5), 2376. doi.org/10.3390/molecules28052376
  • 29. Kyyak V. 2014. Vitality as an integral indicator of plant population state. Biolohichni Studii, 8(3–4), 273–284. doi.org/10.30970/sbi.0803.364
  • 30. Minarchenko V., Futorna O., Tymchenko I., Dvirna T. 2020. Palynomorphological peculiarities of species Hypericum L. (Hypericaceae) of the flora of Ukraine. Biolohichni systemy, 12, 298–307. doi.org/10.31861/biosystems2020.02.298
  • 31. Minarchenko V.M., Syvohlaz L.M. 1996. Horological and resource evaluation of species of the genus Hypericum L. of the left–bank forest–steppe of Ukraine. Ukrainian Botanical Journal, 53(6), 696–702.
  • 32. Mirzoieva T., Tomashevska O., Gerasymchuk N. 2021. Analysis of medicinal plants cultivation in ukraine on sustainable development principles. Grassroots Journal of Natural Resources, 4(2), 151–164. doi.org/10.33002/nr2581.6853.040211
  • 33. Nobakht S.Z., Akaberi M., Mohammadpour A., Tafazoli Moghadam A., Emami A. 2022. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iranian Journal of Basic Medical Sciences, 25(9), 1045–1058. doi.org/10.22038/ijbms.2022.65112.14338
  • 34. Pannell J. 2012. The ecology of plant populations: their dynamics, interactions and evolution. Ann Bot., 110(7), 1351–1355. doi.org/10.1093/aob/mcs224
  • 35. Penkovska L.V. 2020. Dimensional features of Thymus serpyllum L. Emend. Mill. and Thymus x polessicus Klokov (Lamiaceae) in the conditions of different phytocenoses in the Shostka geobotanical district, Sumy region. Cherkasy University Bulletin: Biological Sciences Series, 1, 53–61. doi.org/10.31651/2076–5835–2018–1–2020–1–53–61
  • 36. Piatti D., Marconi R., Caprioli G., Angeloni S., Ricciutelli M., Zengin G., Maggi F., Pagni L., Sagratini G. 2023. Assessment and comparison of phytochemical constituents and biological activities between full flowering and late flowering of Hypericum perforatum L. Applied Sciences, 13(24), 13304. doi.org/10.3390/app132413304
  • 37. Rapisarda L., Iauk L., Ragusa S. 2003. A quantitative morphological analysis of some Hypericum species. Pharmaceutical Biology, 41(1), 1–6. doi.org/10.1076/phbi.41.1.1.14693
  • 38. Scholz I., Liakoni E., Hammann F., Grafinger K.E., Duthaler U., Nagler M., Krähenbühl S., Haschke M. 2021. Effects of Hypericum perforatum (St John’s wort) on the pharmacokinetics and pharmacodynamics of rivaroxaban in humans. British Journal of Clinical Pharmacology, 87(3), 1466–1474. doi.org/10.1111/bcp.14553
  • 39. Şenkal B.C., Uskutoğlu T. 2023. The impact of morpho–and onto–genetic variation on essential oil profile of Hypericum heterophyllum Vent., an endemic species in Turkey’s flora. Kahramanmaras Sutcu Imam University Journal of Natural Sciences, 26(4), 854–860. doi.org/10.18016/ksutarimdoga.vi.1084534
  • 40. Sherif M.M., Elshikh H.H., Abdel–Aziz M.M., Elaasser M.M., Yosri M. 2023. In vitro antibacterial and phytochemical screening of Hypericum perforatum extract as potential antimicrobial agents against multi–drug–resistant (MDR) strains of clinical origin. BioMed Research International, e6934398.doi.org/10.1155/2023/6934398
  • 41. Skliar V., Kovalenko I., Skliar Iu., Sherstiuk M. 2019. Vitality structure and its dynamics in the process of natural reforestation of Quercus robur L. AgroLife Scientific Journal, 8(1), 233–241. 42. Skliar V., Kyrylchuk K., Tykhonova O., Bondarieva L., Zhatova H., Klymenko A., Bashtovyi M., Zubtsova I. 2020. Ontogenetic structure of populations of forest–forming species of the Left Bank Polissia of Ukraine. Baltic Forestry, 26(1), e441. doi.org/10.46490/BF441
  • 43. Springer T. 2021. How does plant population density affect the biomass of Ravenna grass?. GCB Bioenergy, 13(1), 175–184. doi.org/10.1111/gcbb.12767
  • 44. Vynokurov D., Borovyk D,, Chusova O., Davydova A., Davydov D., Danihelka J., Dembic I., Iemelianova S., Kolomiiets G., Moysiyenko I., Shapoval V., Shynder O., Skobel N., Buzhdygan O., Kuzemko A. 2024. Ukrainian Plant Trait Database: UkrTrait v. 1.0. Biodivers Data Jjurnal, 12, e118128. doi.org/10.3897/BDJ.12.e118128
  • 45. Weigelt P., Konig C., Kreft H. 2020. GIFT – A global inventory of floras and traits for macroecology and biogeography. Journal of Biogeography, 47, 16–43. doi.org/10.1111/jbi.13623
  • 46. Yaroshenko N., Skliar V. 2022. Onthogenetic and vitality structure of Asarum europaeum in terms of forest management in Goettingen forest, Low Saxony, Germany. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 22, 397– 403. doi.org/10.5593/sgem2022V/3.2/s14.46
  • 47. Yaroshenko N.P. 2023. The assessment of ontogenetic and vitality structures of populations of Lathyrus vernus (L.) bernh in the Göttingen forest (Lower Saxony, Germany). Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 54(4), 68–73. doi.org/10.32782/agrobio.2023.4.10
  • 48. Zeb S., Ismat N., Alya M. 2010. A review of the antibacterial activity of Hypericum perforatum L., Journal of Ethnopharmacology, 131 (3), 511–521. doi.org/10.1016/j.jep.2010.07.034
  • 49. Zhang Y., Chen H., Taylor A. 2017. Positive species diversity and above–ground biomass relationships are ubiquit ous across forest strata despite interference from overstorey trees. Functional Ecology, 31(2), 419–426. doi.org/10.1111/1365–2435.12699
  • 50. Zhou W., Yang S., Yang L., Xiao R., Chen S., Wang D., Wang S., Wang Z. 2022. Genome–wide identification of the Hypericum perforatum WRKY gene family implicates HpWRKY85 in drought resistance. International Journal of Molecular Sciences, 24(1), 352. doi.org/10.3390/ijms24010352
  • 51. Zlobin Yu., Kovalenko I., Klymenko H., Kyrylchuk K., Bondarieva L., Tykhonova O., Zubtsova I. 2021. Vitality analysis algorithm in the study of plant individuals and populations. The Open Agriculture Journal, 15, 119–129. doi.org/10.2174/1874331502115010119
  • 52. Zlobin Y.A. 1997. Ecological features of clonal plants]. Ukrainian Botanical Journal, 54(2), 153–156.
  • 53. Zlobin Yu.A. 2018. An algorithm for assessing the vitality of plant individuals and the vitality structure of phytopopulations. Chornomorskyi Botanichnyi Zhurnal, 14(3), 213–226. doi: 10.14255/2308–9628/18.143/2
  • 54. Zlobin Y.A., Skliar V.G., Klymenko G.O. 2022. Biology and ecology of phytopopulations. Sumy: Universytetska Knyga, 512 (in Ukrainian). 55. Zlobin Y.A., Sklyar V.G., Bondaryeva L.M., Kirilchuk K.S. 2009. Morphometry concept in modern botany. Chornomorskyi Botanichnyi Zhurnal, 5(1), 5–22.
  • 56. Zubtsova I. 2017. Vitality structure of Potentilla erecta L. Raeusch. cenopopulations’ in Krolevets– Hlukhiv geobotanical region. Visnyk Lvivskoho universytetu. Seriia biolohichna, 76, 112–119. doi.org/10.30970/vlubs.2017.76.14
  • 57. Zubtsova I., Penkovska L., Skliar V. & Skliar Iu. 2019. Dimensional features of cenopopulations of some species of medicinal plants in the conditions of North–East Ukraine. AgroLife Scientific Journal, 8(2), 191–201.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-125864c0-399e-42f4-8c89-7b119082cd98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.