PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Symptom Diagnostic Investigation of the Working Process of a Marine Diesel Engine: Case Study. Part 2 Simulation Diagnostics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This second part of our manuscript deals with the diagnostic capabilities of the Blitz-PRO utility computer program. These capabilities form the basis of the Weichai WP4 engine’s digital twin, in terms of multi-symptom identification of selected states of the engine’s fed system and valve train system. These states include the use of non-standard fuel, the wear of precision pairs of the high-pressure fuel pump, and mismatched camshaft positioning during engine assembly after maintenance. The basic assumptions of the mathematical model of the diesel engine used in Blitz-PRO are outlined here, and numerical experiments are conducted on the model to simulate the behaviour of the Weichai WP4 engine after the introduction of the considered states. Based on the results of numerical simulations of the working process, a relational model is proposed, which forms the basis for diagnostic reasoning. A comparative analysis of the changes in the diagnostic parameters of the relational model and the resulting syndromes enables early detection of similar states of fuel-fed systems for similar engine types.
Rocznik
Tom
Strony
87--96
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Gdansk, Poland
  • Odesa National Maritime University, Odesa, Ukraine
  • Odesa National Maritime University, Odesa, Ukraine
  • Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1. Nath K, Kumar V, Smith DJ, Karniadakis GE. A digital twin for diesel engines: Operator-infused PINNs with transfer learning for engine health monitoring. Cornell University, December 17, 2024. https://doi.org/10.48550/arXiv.2412.11967.
  • 2. Minchev D, Varbanets R, Shumylo O, Zalozh V, Aleksandrovska N, Bratchenko P, Truong TH. Digital twin test-bench performance for marine diesel engine applications. Polish Maritime Research 2023, Vol. 30, no. 4, pp. 81-91. https://doi.org/10.2478/pomr-2023-0061.
  • 3. Hu D, Wang H, Yang C, Wang B, Duan B, Wang Y, Li H. Construction of digital twin model of engine in-cylinder combustion based on data-driven. Energy 2024, Vol. 293, p. 130543. https://doi.org/10.1016/j.energy.2024.130543.
  • 4. Sagin SV, Solodovnikov VG. Estimation of operational properties of lubricant coolant liquids by optical methods. International Journal of Applied Engineering Research 2017, Vol. 12, no. 19, pp. 8380-8391.
  • 5. Sagin SV, Karianskyi S, Sagin SS, Volkov O, Zablotskyi Y, Fomin O, Pištěk V, Kučera P. Ensuring the safety of Maritime transportation of drilling fluids by platform supply-class vessel. Applied Ocean Research 2023, Vol. 140, p. 103745. https://doi.org/10.1016/j.apor.2023.103745.
  • 6. Kafar I, Merkisz J, Piaseczny L. Fuel spray model in a medium speed marine engine—A simulation. Combustion Engines 2006, Vol. 126, no. 3, pp. 63-76. https://doi.org/10.19206/ce-117345.
  • 7. Hahn T. Ignition study in rapid compression machine. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46641.
  • 8. Wadkar C, Chinnathambi P, Toulson E. Analysis of rapid compression machine facility effects on the auto-ignition of ethanol. Fuel 2020, Vol. 264, 116546. https://doi.org/10.1016/j.fuel.2019.116546.
  • 9. Bilousov I, Bulgakov M, Savchuk V. Modern marine internal combustion engines: A technical and historical overview. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping, 2020. https://doi.org/10.1007/978-3-030-49749-1.
  • 10. Ghojel JI. Review of the development and applications of the Wiebe function: A tribute to the contribution of Ivan Wiebe to engine research. International Journal of Engine Research 2010, Vol. 11, p. 297-312. https://doi.org/10.1243/14680874JER06510.
  • 11. Basurko OC, Uriondo Z. Condition-based maintenance for medium speed diesel engines used in vessels in operation. Applied Thermal Engineering 2015, Vol. 80, p. 404-412. https://doi.org/10.1016/j.applthermaleng.2015.01.075.
  • 12. Korczewski Z. Test method for determining the chemical emissions of a marine diesel engine exhaust in operation. Polish Maritime Research 2021, Vol. 28, no. 3(111), pp. 76-87. https://doi.org/10.2478/pomr-2021-0035.
  • 13. Melnyk O, Bychkovsky Y, Onishchenko O, Onyshchenko S, Volianska Y. Development of the method of shipboard operations risk assessment quality evaluation based on experts review. Studies in Systems, Decision and Control 2023, Vol. 481, pp. 695-710. https://doi.org/10.1007/978-3-031-35088-7_40.
  • 14. Gutenbaum J. Mathematical modeling of systems. Systems Research Institute of the Polish Academy of Sciences 1992.
  • 15. Cannon RH. Dynamics of physical systems. New York, Dover Publications; 2003.
  • 16. Tamhane AC. Statistical analysis of designed experiments: Theory and applications. Wiley Series in Probability and Statistics; 2009.
  • 17. Tsitsilonis KM, Theotokatos G, Patil C, Coraddu A. Health assessment framework of marine engines enabled by digital twins. International Journal of Engine Research 2023, Vol. 24, no. 7, pp. 3264-3281. https://doi.org/10.1177/14680874221146835.
  • 18. Varbanets R, Shumylo O, Marchenko A, Minchev D, Kyrnats V, Zalozh V, Aleksandrovska N, Brusnyk R, Volovyk K. Concept of vibroacoustic diagnostics of the fuel injection and electronic cylinder lubrication systems of marine diesel engines. Polish Maritime Research 2022, Vol. 29, no. 4, pp. 88-96. https://doi.org/10.2478/pomr-2022-0046.
  • 19. Neumann S, Varbanets R, Minchev D, Malchevsky V, Vitalii Zalozh V. Vibrodiagnostics of marine diesel engines in IMES GmbH systems. Ships and Offshore Structures 2023, Vol. 18, no. 11, pp. 1535-1546. https://doi.org/10.1080/17445302.20 22.2128558.
  • 20. Varbanets R, Fomin O, Pištěk V, Klymenko V, Minchev D, Khrulev A, Zalozh V, Kučera P. Acoustic method for Estimation of marine low-speed engine turbocharger parameters. Journal of Marine Science and Engineering 2021, Vol. 9(3), no. 321, pp. 1-13. https://doi.org/10.3390/jmse9030321.
  • 21. Varbanets R, Minchev D, Kucherenko Y, Zalozh V, Kyrylash O, Tarasenko T. Methods of real-time parametric diagnostics for marine diesel engines. Polish Maritime Research 2024, Vol. 31, no. 3, pp. 71-84. https://doi.org/10.2478/pomr-2024-0037.
  • 22. Minchev D, Varbanets R, Aleksandrovskaya N, Pisintsaly L. Marine diesel engines operating cycle simulation for diagnostics issues. Acta Polytechnica 2021, Vol. 3, no. 61, pp. 428-440. https://doi.org/10.14311/AP.2021.61.0435.
  • 23. Blitz-PRO by D S Minchev. User’s manual. Retrieved from http://blitzpro.zeddmalam.com/ extra/Tutorial/Help.pdf.
  • 24. Minchev D, Gogorenko OA, Varbanets RA, Moshentsev YL, Pištěk V, Kučera P, Shumylo OM, Kyrnats VI. Prediction of centrifugal compressor instabilities for internal combustion engines operating cycle simulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2023, Vol. 237, nos. (2-3), pp. 572-584. https://doi.org/10.1177/09544070221075419.
  • 25. Varbanets R, Minchev D, Savelieva I, Rodionov A, Mazur T, Psariuk S, Bondarenko V. Advanced marine diesel engines diagnostics for IMO decarbonization compliance. AIP Conf. Proc. 16th February 2024, vol 3104, no. 1, p. 020004. https://doi.org/10.1063/5.0198828.
  • 26. Melnyk O, Onishchenko O, Onyshchenko, S. Renewable energy concept development and application in shipping industry. Lex Portus 2023, Vol. 9, no. 6, pp. 15-24. https://doi.org/10.26886/2524-101X.9.6.2023.2.
  • 27. Korczewski Z. An entropy function application within the selection process of diagnostic parameters of marine diesel and gas turbine engines. Polish Maritime Research 2010, Vol. 2(65), no. 17, pp. 29-35. https://doi.org/10.2478/v10012-010-0015-2.
  • 28. Korczewski Z, Rudnicki J, Varbanets R, Minchev D. Multisymptom diagnostic investigation of the working proces of a marine diesel engine: Case study. Part 1: Measurement Diagnostics. Polish Maritime Research 2025, Vol. 32, no. 2, pp. 50-61. https://doi.org/10.2478/pomr-2025-0020.
  • 29. ISO 8217:2024. Products from petroleum, synthetic and renewable sources - Fuels (class F) - Specifications of marine fuels. Standard by International Organization for Standardization , 06/01/2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1256e9e3-ae57-4705-9cdd-9340b23e5dfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.