Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work alginate nanocomposite fibers modified with magnetite were investigated as prospective material for bone tissue regeneration after tumor resection. In the first stage of the research the morphology of composite fibers and their chemical composition were evaluated. Determination of the mechanical properties of the nanocomposite materials indicated that magnetite does not improve the strength of the nanocomposites. A slight increase of Young’s modulus was observed only for composite fibers with a lower concentration of nanoadditive. Weekly and monthly incubation of fibers in distilled water indicates the release of magnetite from the material. This result is optimistic in terms of the applicability of these materials, not only for tissue regeneration, but also to destroy cancer cells using the external magnetic field.
Słowa kluczowe
Czasopismo
Rocznik
Strony
17--20
Opis fizyczny
Bibliogr. 17 poz., tab., wykr., zdj.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Technical University of Lodz, Faculty of Materials Technologies and Textile Design, Department of Man-Made Fibers, ul. Żeromskiego 116, 90-926 Lodz, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Pan C.-J., Tang J.-J., Weng Y.-J., Wang J., Huang N., Colloids and Surfaces B: Biointerfaces 73 (2009) 199–206.
- [2] Hoffman A.S., Clinical Chemistry 46(9) (2000) 1478–86.
- [3] Furth M.E., Atala A., Van Dyke M.E., Biomaterials 28 (2007) 5068–5073.
- [4] Jayabalan M., Shalumon K.T., Mitha M.K., Ganesan K., Epple M., Acta Biomaterialia 6 (2010) 763–775.
- [5] Sitharaman B., Shi X., Walboomers X.F., Liao H., Cuijpers V., Wilson L.J., Mikos A.G., Jansen J.A., Bone 43 (2008) 362–370.
- [6] Noh K.-T., Lee H.-Y., Shin U.-S., Kim H.-W., Materials Letters 64 (2010) 802–805.
- [7] Mozafari M., Rabiee M., Azami M., Maleknia S., Applied Surface Science 257 (2010) 1740–1749.
- [8] Stodolak E., Paluszkiewicz C., Bogun M., Blazewicz M., Journal of Molecular Structure 924–926 (2009) 208–213.
- [9] Yang B., Li Y., Shi S., Kong X.Y., Guo G., Huang M.J., Luo F., Wei Y.Q., Zhao X., Qian Z.Y., Carbohydrate Polymers 80 (2010) 860–865.
- [10] Liu X., Kaminski M.D., Chen H., Torno M., Taylor L.T., Rosengart A.J., Journal of Controlled Release 119 (2007) 52–58.
- [11] Yuan Q., Venkatasubramanian R., Hein S., Misra R.D.K., Acta Biomaterialia 4 (2008) 1024–1037.
- [12] Osaka T., Nakanishi T., Shanmugam S., Takahama S., Zhang H., Colloids and Surfaces B: Biointerfaces 71 (2009) 325–330.
- [13] Murbe J., Rechtenbach A., Topfer J., Materials Chemistry and Physics 110 (2008) 426–433.
- [14] Slawska–Waniewska A., Postępy fizyki 2004, T. 55, 157, 159-161.
- [15] Olejnik M., Techniczne wyroby włókiennicze 1-2 (2008) 25 – 27.
- [16] Fraczek–Szczypta A., Badania nad oddziaływaniem nanorurek węglowych w kompozytach z osnową poliakrylonitrylową i węglową, Praca doktorska, Krakow 2009.
- [17] Kotela I., Podporska J., Soltysiak E., Konsztowicz K.J., Blazewicz M.,Ceramics International 35 (2009) 2475–2480
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1252e05a-8ffd-46c9-9f29-ed03824ea034