PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of hardware-in-the-loop test bench for evaluating steering wheel angle sensor performance for steer-by-wire system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the Steer-by-Wire (SBW) technology has been gaining popularity and replacing classical steering systems. It plays the most crucial role in autonomous cars where the vehicle must perform maneuvers on its own without driver’s intervention. One of the key components of this system is the steering wheel angle sensor (SAS). Its reliability and performance may affect driver’s life and health. The purpose of this paper is to show a test system to comprehensively evaluate the performance of the steering wheel angle sensor in the SBW system during real-world maneuvers and show how SAS parameters such as accuracy of angle, angular speed etc. affect car trajectory resulting in hit cones. For this purpose, a test system was built, with the use of virtual test drives based on CarMaker software, CANoe and VTSystem hardware. In order to evaluate its performance, the errors introduced by the system were determined. Additionally, using the realised test system, three commercial steering wheel angle sensors were tested and compared during a virtual test drive. Their errors were determined, as well as their performance in the SBW technology and the consistency of the obtained results with the parameters declared by the manufacturer were verified as well.
Rocznik
Strony
639--653
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Mortazavizadeh, S. A., Ghaderi, A., Ebrahimi, M., & Hajian, M. (2020). Recent Developments in the Vehicle Steer-by-Wire System. IEEE Transactions on Transportation Electrification, 6(3), 1226-1235. https://doi.org/10.1109/TTE.2020.3004694
  • [2] Mohamed, Eid S., & Albatlan, Saeed A. (2014). Modeling and Experimental Design Approach for Integration of Conventional Power Steering and a Steer-By-Wire System Based on Active Steering Angle Control. American Journal of Vehicle Design, 2(1), 32-42. https://doi.org/10.12691/ajvd-2-1-5
  • [3] Nexteer Automotive. (n.d). ADAS & Automated Driving STEER-BY-WIRE. Retrieved January 10, 2022, from https://www.nexteer.com/a-d-a-s-automated-driving/steer-by-wire/
  • [4] Pietruch, M., Młyniec, A., & Wetula, A. (2020). An overview and review of testing methods for the verification and validation of ADAS, active safety systems, and autonomous driving. Mining - Informatics, Automation and Electrical Engineering, 1(1), 19-27. https://doi.org/10.7494/miag.2020.1.541.19
  • [5] Zacharia, S., George, T., Rufus, E., & Alex, Z. C. (2017, July). Implementation of steering wheel angle sensor system with Controlled Area Network. In 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (pp. 54-60). IEEE. https://doi.org/10.1109/ICICICT1.2017.8342534
  • [6] Youn, J., An, J., Di Yin, M., Cho, J., & Park, D. (2016). Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table. Transactions of the Korean Society of Automotive Engineers, 24(1), 112-121. https://doi.org/10.7467/ksae.2016.24.1.112
  • [7] Moon, B. J., Yeon, K. B., Lee, S. G., Hong, S. P., Nam, S. Y., & Kim, D. H. (2012). Drowsy Driving Detection Algorithm Using a Steering Angle Sensor and State of the Vehicle. The Institute of Electronics and Information Engineers, 49(2), 30-39. https://www.koreascience.or.kr/article/JAKO201223052005905.pdf
  • [8] Li, L., Werber, K., Calvillo, C. F., Dinh, K. D., Guarde, A., & König, A. (2014). Multi-sensor soft-computing system for driver drowsiness detection. In V. Snášel, P. Krömer, M. Köppen, & G. Schaefer (Eds.), Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing (pp. 129-140). Springer. https://doi.org/10.1007/978-3-319-00930-8_12
  • [9] Ataide, F., Santos, M. M., & Vasques, F. (2004, December). A Comparison of the Communication Impact in CAN and TTP/C networks when supporting Steer-by-Wire Systems. In 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT’04. (Vol. 2, pp. 1078-1083). IEEE. https://doi.org/10.1109/icit.2004.1490227
  • [10] Shah, M. B. N., Husain, A. R., & Dahalan, A. S. A. (2013, November). An analysis of CAN-based steer-by-wire system performance in vehicle. In 2013 IEEE International Conference on Control System, Computing and Engineering (pp. 350-355). IEEE. https://doi.org/10.1109/ICCSCE.2013.6719988
  • [11] Wang, C., Li, F., Wang, Y., & Wagner, J. R. (2021). Haptic Assistive Control with Learning-Based Driver Intent Recognition for Semi-Autonomous Vehicles. IEEE Transactions on Intelligent Vehicles, 1-13. https://doi.org/10.1109/TIV.2021.3137805
  • [12] Wang, C., Wang, Y., & Wagner, J. R. (2019). Evaluation of a Robust Haptic Interface for Semi-Autonomous Vehicles. SAE International Journal of Connected and Automated Vehicles, 2(2), 1-16. https://doi.org/10.4271/12-02-02-0007
  • [13] Jabłoński, P., Iwaniec, J., & Jabłoński, M. (2021). Multisensory Testing Framework for Advanced Driver Assistant Systems Supported by High-Quality 3D Simulation. Sensors, 21(24), 1-20. https://doi.org/10.3390/s21248458
  • [14] Lee, S. J., Park, K., Hwang, T. H., Hwang, J. H., Jung, Y. C., & Kim, Y. J. (2007). Development of Hardware-in-the-Loop Simulation System as a Testbench for ESP Unit. International Journal of Automotive Technology, 8(2), 203-209. https://www.koreascience.or.kr/article/JAKO200734514893963.pdf
  • [15] Yeh, C. J., Ho, S. R., Lin, M. C., Hu, T. H., & Hsu, T. H. (2007, September). Development of a test bench for tuning and validating electric power steering control method. In 2007 IEEE Vehicle Power and Propulsion Conference (pp. 618-622). IEEE. https://doi.org/10.1109/VPPC.2007.4544197
  • [16] Anwar, S. (2010). Fault Detection, Isolation, and Control of Drive by Wire Systems. In W. Zhang (Eds.), Fault Detection (pp. 231-254). IntechOpen. https://doi.org/10.5772/9079
  • [17] Modelica Association. (2020). Functional Mock-up Interface for Model Exchange and Co-Simulation. Document version: 2.0.2. Retrieved January 10, 2022, from https://fmi-standard.org/downloads/
  • [18] IPG Automotive GmbH. (2019). CarMaker Tips & Tricks No. 6-005. Connecting CarMaker with CANoe through FMU. Retrieved January 10, 2022. https://ipg-automotive.com/uploads/tx_pbfaqtickets/files/86/CarMaker_CANoe_FMU_connect.pdf
  • [19] Vector Informatik GmbH. (2018). Manual CANoe FDX Protocol. Version 2.0
  • [20] Vector Informatik GmbH. (2015). Fast Data Exchange with CANoe. Version 1.0. [Application note]. https://cdn.vector.com/cms/content/know-how/_application-notes/AN-AND-1-119_Fast_Data_Exchange_with_CANoe.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-124fa6cf-7f3b-4576-ba70-87aa32003de6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.