PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Corrosion Rate of FeMn-Si Biodegradable Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Fe-based alloy with manganese led to the appearance of new austenitic alloys, with the antiferromagnetic property pursued, resulting in compatibility with the magnetic field as that of magnetic resonance imaging. The corrosion resistance behavior of the biodegradable Fe-Mn-Si alloy was analyzed in a thermostatic chamber at 37±1°C for 24, 48 and 72 hours by immersing in Ringer solution. Also, the cast and laminated samples were subjected to electro-corrosion tests using a potentiostat equipment. Linear and cyclic potentiometry is presented for characterize the corrosion behavior of the experimental samples in electrolyte. Due to the interaction between the alloy and the liquid medium a change in the solution pH was observed. Structure analysis and chemical composition details of the surfaces were obtained using electron scanning microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS).
Słowa kluczowe
Twórcy
  • Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  • Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  • Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
autor
  • Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  • Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  • “Gheorghe Asachi” Technical University of Iasi, Department of Physics, 700050 Iasi, Romania
  • “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Univ. Street, 700115 Iasi, Romania
  • “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Univ. Street, 700115 Iasi, Romania
  • Częstochowa University of Technology, Department of Physics , 42-200 Częstochowa, Poland
autor
  • “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 16 Univ. Street, 700115 Iasi, Romania
Bibliografia
  • [1] H. Hermawan, D. Dubé, D. Mantovani, Development of Degradable Fe-35Mn Alloy for Biomedical Application, Mater. Sci. Eng. 15-17, 107-112 (2007). DOI: https://doi.org/10.4028/www.scientific.net/AMR.15-17.107
  • [2] M. Schinhammer, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, Design Strategy for Biodegradable Fe-Based Alloys for Medical Applications, Acta Biomater. 6 (5), 1705-1713 (2010). DOI: https://doi.org/10.1016/j.actbio.2009.07.039
  • [3] D. Spandana, H. Desai, D. Chakravarty, R. Vijay, K. Hembram, Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted sintering, Adv. Powder Technol. 31, 4577-4584 (2020). DOI: https://doi.org/10.1016/j.apt.2020.10.012
  • [4] M.S. Baltatu, P. Vizureanu, A.V. Sandu, C. Munteanu, B. Istrate, Microstructural Analysis and Tribological Behavior of Ti-Based Alloys with a Ceramic Layer Using the Thermal Spray Method, Coatings 10 (12), 1216 (2020). DOI: https://doi.org/10.3390/coatings10121216
  • [5] A.V. Sandu, M.S. Baltatu, M. Nabialek, A. Savin, P. Vizureanu, Characterization and Mechanical Proprieties of New TiMo Alloys Used for Medical Applications, Materials 12 (18), 2973 (2019). DOI: https://doi.org/10.3390/ma12182973
  • [6] B. Istrate, C. Munteanu, S. Lupescu, R. Chelariu, M.D. Vlad, P. Vizureanu, Electrochemical Analysis and In Vitro Assay of Mg-0.5Ca-xY Biodegradable Alloys, Materials 13 (14), 3082 (2020). DOI: https://doi.org/10.3390/ma13143082
  • [7] C. Panaghie, R. Cimpoesu, A. Alexandru, M. Bernevig, V. Manole, A.M. Roman, B.A. Prisacariu, P. Paraschiv, N. Cimpoesu, Chemical and structural analyze of experimental biodegradable ZnMgY alloy, Mater. Sci. Eng. 1037, 012034 (2021). DOI: https://doi.org/10.1088/1757-899X/1037/1/012034
  • [8] hH Hermawan, A. Purnama, D. Dube, J. Couet, D. Mantovani, Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies, Acta Biomater. 6 (5), 1852-1860 (2010). DOI: https://doi.org/10.1016/j.actbio.2009.11.025.
  • [9] Y. Nie, G. Chen, H. Peng, S. Tang, Z. Zhou, F. Pei, B. Shen, In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds, Acta Biomater. 121, 724-740 (2021). DOI: https://doi.org/10.1016/j.actbio.2020.12.028
  • [10] A. Drynda, T. Hassel, F.W. Bach, M. Peuster, In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications, J. Biomed. Mater. Res. B. 103 (3), 649-660 (2015). DOI: https://doi.org/10.1002/jbm.b.33234
  • [11] B. Liu, Y.F. Zheng, L. Ruan, In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material, Mater. Lett. 65 (3), 540-543 (2011). DOI: https://doi.org/10.1016/j.matlet.2010.10.068
  • [12] H.C. Lin, K.M. Lin, C.S. Lin, T.M. Ouyang, The corrosion behavior of Fe-based shape memory alloys, Corros. Sci. 44 (9), 2013-26 (2002). DOI: https://doi.org/10.1016/s0010-938X(02)00027-6
  • [13] B. Liu, Y.F. Zheng, Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron, Acta Biomater. 7 (3), 1407-1420 (2011). DOI: https://doi.org/10.1016/j.actbio.2010.11.001
  • [14] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits, Heart 86, 563-569 (2001).
  • [15] T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, P.J. Uggowitzer, J.F. Löffler, A. Weinberg, Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks, Acta Biomater. 10, 3346-3353 (2014).
  • [16] M. Wada, H. Naoi, H. Yasuda, T. Maruyama, Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy, Mater. Sci. Eng. A 481-482, 178-182 (2008).
  • [17] R.A. Rahman, D. Juhre, T. Halle, S. Mehmood, W. Asghar, Types, DSC Thermal Characterization of Fe-Mn-Si based Shape Memory Smart Materials and their Feasibility for Human Body in Terms of Austenitic Start Temperatures, J. Eng. Technol. 8 (1), 185-206 (2019).
  • [18] M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, M. Murakami, The effects of thermomechanical training treatment on the deformation characteristics of Fe-Mn-Si-Al alloys, Mater. Sci. Eng. A 497, 353-357 (2008).
  • [19] Y.H. Wen, H.B. Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen, Y.Y. Du, Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries, Nat. Commun. 5, 4964 (2014).
  • [20] M.A. Bernevig-Sava, D.C. Darabont, M. Lohan, E. Mihalache, C. Bejinariu, Selection and verification of personal protective equipment in the context of current legal requirements, Quality-Access to Success 20, 109-112 (2019).
  • [21] Y. Li, J. Yan, W. Zhou, P. Xiong, P. Wang, W. Yuan, Y. Zheng, Y. Cheng, In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis, Bioact. Mater. 4, 114-119 (2019). DOI: https://doi.org/10.1016/j.bioactmat.2019.01.001
  • [22] N. Cimpoesu, F. Sandulache, B. Istrate, R. Cimpoesu, G. Zegan, Electrochemical behavior of biodegradable FeMnSi-MgCa Alloy, Metals 8 (7), 541 (2018). DOI: https://doi.org/10.3390/met8070541
  • [23] P. Nayak, A.K. Biswal, S.K. Sahoo, Processing and characterization of Fe-35Mn biodegradable metallic materials, Mater. Today Proc. 33 (8), 5284-5289 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.02.966
  • [24] B. Pricop, A.U. Soyler, B. Ozkal, L.G. Bujoreanu, Powder Metallurgy: An Alternative for FeMnSiCrNi Shape Memory Alloys Processing, Front. Mater. 7, 247 (2020). DOI: https://doi.org/10.3389/fmats.2020.00247
  • [25] M. Popa, E. Mihalache, V.D. Cojocaru, C. Gurau, G. Gurau, N. Cimpoesu, B. Pricop, R.I. Comaneci, M. Vollmer, P. Krooss, T. Niendorf, L.G. Bujoreanu, Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Fe-Based Alloys, J. Mater. Eng. Perform. 29 (4), 2274-2282 (2020). DOI: https://doi.org/10.1007/s11665-020-04609-z
  • [26] l.G. Bujoreanu, Development of shape memory and superelastic applications of some experimental alloys, J. Optoelectron. Adv. M. 17 (9-10), 1437-1443 (2015).
  • [27] H. Dong, F. Lin, A.R. Boccaccini, S. Virtanen, Corrosion behawior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe, Corros. Sci. 182, 109278 (2021). DOI: https://doi.org/10.1016/j.corsci.2021.109278
  • [28] E. Mouzou, C. Paternoster, R. Tolouei, A. Purnama, P. Chevallier, D. Dubé, F. Prima, D. Mantovani, In vitro degradation behavior of Fe-20Mn-1.2C alloy in three different pseudo-physiological solutions, Mater. Sci. Eng. C Mater. Biol. Appl. 61, 564-573 (2016). DOI: https://doi.org/10.1016/j.msec.2015.12.092
  • [29] M. Moravej, A. Purnama, M. Fiset, J. Couet, D. Mantovani, Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies, Acta Biomater. 6 (5), 1843-1851 (2010). DOI: https://doi.org/10.1016/j.actbio.2010.01.008
  • [30] M. Pivokonsky, J. Safarikova, P. Bubakova, L. Pivokonska, Coagulation of peptides and proteins produced by Microcystis aeruginosa: Interaction mechanisms and the effect of Fe-peptide/protein complexes formation, Water Res. 46 (17), 5583-5590 (2012). DOI: https://doi.org/10.1016/j.watres.2012.07.040
  • [31] N.S. Fagalia, C.A. Grilloa, S. Puntarulo, M.A. Fernández Lorenzo de Melea, Cytotoxicity of corrosion products of degradable Fe-based stents: Relevance of pH and insoluble products, Colloid. Surface. B 128, 480-488 (2015). DOI: https://doi.org/10.1016/j.colsurfb.2015.02.047.
Uwagi
1. This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-1921, within PNCDI III.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1248ad33-b103-4b97-9bc7-e9020245dd90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.