PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

pH-dependent composite coatings for controlled drug delivery system — Review

Identyfikatory
Warianty tytułu
PL
Kompozytowe powłoki wrażliwe na pH dla kontrolowanego uwalniania leków — Przegląd
Języki publikacji
EN
Abstrakty
EN
Nowadays in case of long-term implants, the most common postoperative complications are bacterial infections, which in consequence may provoke loosening of the implants in the primary phase of stabilization. Bacterial infections are currently the most frequent cause of revision surgery of the implants such as hip joint endoprosthesis, knee joint endoprosthesis and dental implants. In order to provide the local and long-term antibacterial cover in the tissues surrounding the implant, research is performed on materials that are carriers of drugs, which release active substances only in the case of the pH change in the system during inflammation. In consequence, biomaterials ensure antibacterial protection for a long time, not only in short post-operative period. An example of such materials are biopolymers. Biopolymers sensitive to change in pH value of the environment of live tissue that surround the implants can be used as an independent implants or as the coatings on the implants. In this case in the polymer`s matrix is dispersed often used drugs such as doxorubicin, gentamicin, vancomycin and cefuroxime. Drugs are released from this biomaterial according to three main mechanisms: diffusion, swelling and material degradation. This review paper presents the mechanism of bacterial interaction with implant surface and biofilm formation, and mechanism of drugs release from the biological active substance. Therefore, the natural and synthetic polymer materials sensitive to the lower value of pH such as chitosan, Eudragit E 100, Poly (L-histidine) and Poly (4-vinyl pyridine) are described.
PL
W artykule omówiono problem zakażeń bakteryjnych związanych z wszczepieniem biomateriału do organizmu człowieka oraz sposoby ograniczania rozwoju tych zakażeń za pomocą kontrolowanych systemów dostarczania leków, bazując na obszernym przeglądzie najnowszej literatury naukowej.
Rocznik
Strony
62--67
Opis fizyczny
Bibliogr. 57 poz., tab.
Twórcy
  • Gdansk University of Technology, Department of Materials Engineering and Bonding, Gdansk
  • Gdansk University of Technology, Department of Materials Engineering and Bonding, Gdansk
  • Gdansk University of Technology, Department of Materials Engineering and Bonding, Gdansk
Bibliografia
  • [1] Kurtz S. M., Lau E., Ong K., Zhao K., Kelly M., Bozic K. J.: Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clinical Orthopaedics and Related Research 467 (2009) 2606÷2612.
  • [2] Sharan J., Lale S. V, Koul V., Mishra M., Kharbanda O. P.: An overview of surface modifications of titanium and its alloys for biomedical applications. Trends in Biomaterials and Artificial Organs 29 (2015) 176÷187.
  • [3] Park K. H., Kim S. J., Hwang M. J., Song H. J., Park Y. J.: Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid and Polymer Science 295 (2017) 1843÷1849.
  • [4] Zhao L., Chu P. K., Zhang Y., Wu Z.: Antibacterial coatings on titanium implants. Journal of Biomedical Materials Research, Part B Applied Biomaterials 91 (2009) 470÷480.
  • [5] Oliveira W. F., Silva P. M. S., Silva R. C. S., Silva G. M. M., Machado G., Coelho L. C. B. B., Correia M. T. S.: Staphylococcus aureus and Staphylococcus epidermidis infections on implants. Journal of Hospital Infection 98 (2018) 111÷117.
  • [6] Ribeiro M., Monteiro F. J., Ferraz M. P.: Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial–material interactions. BioMatter 2 (2012) 176÷194.
  • [7] Arciola C. R., Campoccia D., Speziale P., Montanaro L., Costerton J. W.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33 (2012) 5967÷5982.
  • [8] Hetrick E. M., Schoenfisch M. H.: Reducing implant-related infections: Active release strategies. Chemical Society Reviews 35 (2006) 780÷789.
  • [9] Świeczko-Żurek B., Bartmański M.: Investigations of titanium implants covered with hydroxyapatite layer. Advances in Materials Science 16 (2016) 78÷86.
  • [10] Prasad S.: Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures 3 (2008) 115÷122.
  • [11] Nablo B. J., Rothrock A. R., Schoenfisch M. H.: Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. Biomaterials 26 (2005) 917÷924.
  • [12] Liechty W. B., Kryscio D. R., Slaughter B. V.: Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering 1 (2010) 149÷173.
  • [13] Karimi A. R., Rostaminejad B., Rahimi L., Khodadadi A., Khanmohammadi H., Shahriari A.: Chitosan hydrogels cross-linked with tris(2-(2- formylphenoxy)ethyl)amine: Swelling and drug delivery. International Journal of Biological Macromolecules 118 (2018) 1863÷1870.
  • [14] Kao W. J., Fu Y.: Drug release kinetics and transport mechanisms of nondegradable and degradable polymeric delivery systems. Expert Opinion on Drug Delivery 7 (2010) 429÷444.
  • [15] Klose D., Siepmann F., Elkharraz K., Siepmann J.: PLGA-based drug delivery systems: Importance of the type of drug and device geometry. International Journal of Pharmaceutics 354 (2008) 95÷103.
  • [16] Gil E. S., Hudson S. M.: Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science (Oxford) 29 (2004) 1173÷1222.
  • [17] Park J. J., Luo X., Yi H., Valentine T. M., Payne G. F., Bentley W. E., Ghodssi R., Rubloff G. W.: Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab on a Chip 6 (2006) 1315÷1321.
  • [18] Liu W. H., Song J. L., Liu K., Chu D. F., Li Y. X.: Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer’s disease. Journal of Controlled Release 107 (2005) 417÷427.
  • [19] Huang X., Brazel C. S.: On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release 73 (2001) 121÷136.
  • [20] Nair L. S., Laurencin C. T.: Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford) 32 (2007) 762÷798.
  • [21] Schmaljohann D.: Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 58 (2006) 1655÷1670.
  • [22] Kocak G., Tuncer C., Bütün V.: pH-Responsive polymers. Polymer Chemistry 8 (2017) 144÷176.
  • [23] Aranaz I., Mengibar M., Harris R., Panos I., Miralles B., Acosta N., Galed G., Heras A.: Functional characterization of chitin and chitosan. Current Chemical Biology 3 (2009) 203÷230.
  • [24] Patel N. G., Kumar A., Jayawardana V. N., Woodworth C. D., Yuya P. A.: Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites. Materials Science and Engineering C 44 (2014) 336÷344.
  • [25] Doerdelmann G., Kozlova D., Epple M.: A pH-sensitive poly(methyl methacrylate) copolymer for efficient drug and gene delivery across the cell membrane. Journal of Materials Chemistry B 2 (2014) 7123÷7131.
  • [26] Farooq U., Khan S., Nawaz S., Ranjha N. M., Haider M. S., Khan M. M., Dar E., Nawaz A.: Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E 100 and polycaprolactone: synthesis and in vitro evaluation. Designed Monomers and Polymers 20 (2017) 419÷433.
  • [27] Li Z., Qiu L., Chen Q., Hao T., Qiao M., Zhao H., Zhang J., Hu H., Zhao X., Chen D., Mei L.: pH-sensitive nanoparticles of poly(l-histidine)– poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia 11 (2015) 137÷150.
  • [28] Bilalis P., Tziveleka L., Varlas S., Iatrou H.: pH-Sensitive nanogates based on poly(l-histidine) for controlled drug release from mesoporous silica nanoparticles. Polymer Chemistry 7 (2016) 1475÷1485.
  • [29] Pattanashetti N.A., Heggannavar G.B., Kariduraganavar M.Y.: Smart biopolymers and their biomedical applications. Procedia Manufacturing 12 (2017) 263÷279.
  • [30] Popescu M. T., Tsitsilianis C.: Controlled delivery of functionalized gold nanoparticles by pH-sensitive polymersomes. ACS Macro Letters 2 (2013) 222÷225.
  • [31] Chen X., Wang Y., Pelton R.: pH-dependence of the properties of hydrophobically modified polyvinylamine. Langmuir 21 (2005) 11673÷11677.
  • [32] Chen Q. J., Li S., Feng Z., Wang M., Cai C., Zhang L.: Poly(2- (diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release. International Journal of Nanomedicine 12 (2017) 6857÷6870.
  • [33] Hu Y., Wang J., Zhang H., Jiang G., Kan C.: Synthesis and characterization of monodispersed P(St-co-DMAEMA) nanoparticles as pH-sensitive drug delivery system. Materials Science and Engineering C 45 (2014) 1÷7.
  • [34] Li J., Tan H., Xu F., Cao S., Liu J., Wu W., Zhang X.: Drug release behaviors of a pH sensitive semi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and star poly[2-(dimethylamino)ethyl methacrylate]. International Journal of Pharmaceutics 416 (2011) 104÷109.
  • [35] Islam S., Bhuiyan M. A. R., Islam M. N.: Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. Journal of Polymers and the Environment 25 (2017) 854÷866.
  • [36] Klaykruayat B., Siralertmukul K., Srikulkit K.: Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydrate Polymers 80 (2010) 197÷207.
  • [37] Lim S., Hudson S. M.: Synthesis and antimicrobial activity of a watersoluble chitosan derivative with a fiber-reactive group. Carbohydrate Research 339 (2004) 313÷319.
  • [38] Wiśniewska-Wrona M., Niekraszewicz A., Struszczyk H., Guzińska K.: Estimation of polymer compositions containing Chitosan for veterinary applications. Fibres and Textiles in Eastern Europe 10 (2002) 82÷85.
  • [39] Kofuji K., Qian C. J., Nishimura M., Sugiyama I., Murata Y., Kawashima S.: Relationship between physicochemical characteristics and functional properties of chitosan. European Polymer Journal 41 (2005) 2784÷2791.
  • [40] Nikam V., Kotade K. B., Gaware V. M.: Eudragit a versatile polymer: A review. Pharmacologyonline 1 (2011) 152÷164.
  • [41] Khatik R., Mishra R., Verma A., Dwivedi P., Kumar V., Gupta V., Paliwal S. K., Mishra P. R., Dwivedi A. K.: Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo. Journal of Nanoparticle Research 15 (2013) 1÷15.
  • [42] Zitzmann N. U., Berglundh. T.: Definition and prevalence of peri-implant diseases. Journal of Clinical Periodontology 35 (2008) 286÷291.
  • [43] Liu J., Huang Y., Kumar A., Tan A., Jin S., Mozhi A., Liang X. J.: pHSensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances 32 (2014) 693÷710.
  • [44] Chen A., Chen M., Wang S., Huang X., Liu Y., Chen Z.: Poly(L-histidine)- chitosan/alginate complex microcapsule as a novel drug delivery agent. Journal of Applied Polymer Science 124 (2011) 3728÷3736.
  • [45] Zeng Y., Tseng S., Kempson I. M., Peng S., Wu W., Liu J.: Controlled delivery of recombinant adeno-associated virus serotype 2 using pH-sensitive poly(ethylene glycol)-poly-L-histidine hydrogels. Biomaterials 33 (2012) 9239÷9245.
  • [46] Hu J., Miura S., Na K., Han Y.: pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment. Journal of Controlled Release 172 (2013) 69÷76.
  • [47] Kan K. H. M., Li J., Wijesekera K., Cranston E. D.: Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomicromolecules 14 (2013) 3130÷3139.
  • [48] Raczkowska J., Stetsyshyn Y., Awsiuk K., Zemła J., Kostruba A., Harhay K., Marzec M., Bernasik A., Lishchynskyi O.: Temperature-responsive properties of poly(4-vinylpyridine) coatings: influence of temperature on the wettability, morphology, and protein adsorption. RSC Advances 6 (2016) 87469÷87477.
  • [49] Abbaszad A., Mahkam M., Davaran S., Hamishehkar H.: A smart pHresponsive nano-carrier as a drug delivery system: A hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): Preparation, characterization and in vitro release. European Journal of Pharmaceutical Sciences 93 (2016) 64÷73.
  • [50] Fullriedea H., Abendrotha P., Ehlert N., Doll K., Schäske J., Winkel A., Stumpp S. N.: pH-responsive release of chlorhexidine from modified nanoporous silica nanoparticles for dental applications. BioNanoMat 17 (2016) 59÷72.
  • [51] Kavitha T., Kang I., Park S.: Poly(4-vinyl pyridine)-grafted graphene oxide for drug delivery and antimicrobial applications. Polymer International 64 (2015) 1660÷1666.
  • [52] Ivanova E. P., Hasan J., Webb H. K., Gervinskas G., Juodkazis S., Truong V. K., Wu A. H. F., Lamb R. N., Baulin V. A., Watson G. S., Watson J. A., Mainwaring D. E., Crawford R .J.: Bactericidal activity of black silicon. Nature Communications 4 (2013) 1÷7.
  • [53] Gimeno M., Pinczowski P., Pérez M., Giorello A., Martínez M. Á., Santamaría J., Arruebo M., Luján L.: A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study. European Journal of Pharmaceutics and Biopharmaceutics 96 (2015) 264÷271.
  • [54] Zhang W., Jin X., Li H., Zhang R., Wu C.: Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydrate Polymers 186 (2018) 82÷90.
  • [55] Horner C., Mawer D., Wilcox M.: Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? Journal of Antimicrobial Chemotherapy 67 (2012) 2547÷2559.
  • [56] Carrilho M. R., Carvalho R. M., Sousa E. N., Nocolau J., Breschi L., Mazzoni A., Tjäderhane L., Tay F. R., Agee K., Pashley D. H.: Substantivity of chlorhexidine to human dentin. Dental Materials 6 (2010) 779÷785.
  • [57] Li H., Wang W., Qu X., Wu C., Liu X., Xu X., Qin A., Dai K., Tian B., Fan Q., Zhai Z., Tang T., Ouyang Z.: The effect of enoxacin on osteoclastogenesis and reduction of titanium particle-induced osteolysis via suppression of JNK signaling pathway. Biomaterials 35 (2014) 5721÷5730.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1246f8a1-2265-4786-a4bb-29ff2ba8c3bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.