PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Apparatus for exposure of cancer cell lines with extremely low frequency (ELF) alternating magnetic field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design of a laboratory stand that facilitates the study of the effects of exposure to magnetic induction of extremely low frequency on cultures of cancer cell lines. The designed laboratory bench is adapted to operate in the frequency range of up to 300 Hz and the maximum settable magnetic induction of 2.5 mT. Tests are conducted on cellular test plates of 24, 48, or 96 wells where it is possible to evaluate the combined effect of magnetic field and cisplatin on cancer cells. The conducted tests determined the uniformity of field distribution inside the constructed solenoid establishing the optimal space for cellular research. Preliminary studies of the effect of the magnetic field on the response of cancer cells treated with cisplatin were conducted on the built stand. The study shows that a magnetic field with certain parameters can significantly affect the response of cancer cells to cisplatin treatment. The application of a magnetic field can either promote cell proliferation or, with appropriately selected parameters, lead to increased cytotoxicity. Continued research will allow us to find the appropriate drug concentration parameters when using magnetic field exposure with given parameters.
Rocznik
Strony
art. no. e153429
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wrocław, Poland
  • National Institute of Telecommunications, Warsaw, Poland
  • Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
  • Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
  • Department of Telecommunications and ICT, Wroclaw University of Science and Technology, Wrocław, Poland
  • Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
  • [1] L. Bergandi et al., “Thermomagnetic Resonance Effect of the Extremely Low Frequency Electromagnetic Field on ThreeDimensional Cancer Models,” Int. J. Mol. Sci., vol. 23, no. 14, pp. 1–19, 2022, doi: 10.3390/ijms23147955.
  • [2] M. Shayeghan, F. Forouzesh, A. Madjid, and M.A. Javidi, “DNMT1 and MiRNAs: Possible Epigenetics Footprints in Electromagnetic Fields Utilization in Oncology,” Med. Oncol., vol. 38, p. 125, 2021, doi: 10.1007/s12032-021-01574-y.
  • [3] A. Xu, Q. Wang, X. Lv, and T. Lin, “Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology,” Front. Oncol., vol. 11, pp. 1–13, 2021, doi: 10.3389/fonc.2021.638146.
  • [4] L. Dini and L. Abbro, “Bioeffects of moderate-intensity static magnetic fields on cell cultures,” Micron, vol. 36, no. 6, pp. 195– 217, 2005, doi: 10.1016/j.micron.2004.12.009.
  • [5] L. Bergandi et al., “The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift,” Biochim. Biophys. Acta-Mol. Cell Res., vol. 1866, no. 9, pp. 1389–1397, 2019, doi: 10.1016/j.bbamcr.2019.05.006.
  • [6] M. Moori, D. Norouzian, P. Yaghmaei, and L. Farahmand, “Electromagnetic field as a possible inhibitor of tumor invasion by declining E-cadherin/N-cadherin switching in triple negative breast cancer,” Electromagn. Biol. Med., vol. 43, no. 4, pp. 236–245, 2024, doi: 10.1080/15368378.2024.2381575.
  • [7] Y. Chen, Y. Wang, T. Sun, J. Zhang, X. Jing, and R. Li, “Dynamic changes of [Ca(2+)] (i) in cerebellar granule cells exposed to pulsed electric fields,” Sci. China Ser. C-Life Sci., vol. 43, pp. 75–81, 2000, doi: 10.1007/BF02881720.
  • [8] R. Polaniak et al., “Influence of an extremely low frequency magnetic field (ELF-EMF) on antioxidative vitamin E properties in AT478 murine squamous cell carcinoma culture in vitro,” Int. J. Toxicol., vol. 29, no. 2, pp. 221–230, 2010, doi: 10.1177/1091581809352011.
  • [9] K. Zwirska-Korczala et al., “Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture,” Biol. Trace Elem. Res., vol. 102, no. 1-3, pp. 227–243, 2004, doi: 10.1385/BTER:102:1-3:227.
  • [10] T. Hadzic et al., “Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress,” Free Radic. Biol. Med., vol. 48, no. 8, pp. 1024–1033, 2010, doi: 10.1016/j.freeradbiomed.2010.01.018.
  • [11] A.L. Simons, I.M. Ahmad, D.M. Mattson, K.J. Dornfeld, and D.R. Spitz, “2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells,” Cancer Res., vol. 67, pp. 3364–3370, 2007, doi: 10.1158/0008-5472.CAN-06-3717.
  • [12] M.T. Tsai, W.J. Li, R.S. Tuan, and W.H. Chang, “Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation,” J. Orthopaed. Res., vol. 27, no. 9, pp. 1169–1174, 2009, doi: 10.1002/jor.20862.
  • [13] S. Mayer-Wagner et al., “Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells,” Bioelectromagnetics, vol. 32, no. 4, pp. 283–290, 2011, doi: 10.1002/bem.20633.
  • [14] R.J. Bułdak et al., “Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells,” Bioelectromagnetics, vol. 33, no. 8, pp. 641–651, 2012, doi: 10.1002/bem.21732.
  • [15] A. Barbault et al., “Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach,” J. Exp. Clin. Cancer Res., vol. 28, no. 1, pp. 1–10, 2009, doi: 10.1186/1756-9966-28-51.
  • [16] V. Salari et al., “Electromagnetic ?elds and optomechanics in cancer diagnostics and treatment,”Front. Biosci. (Landmark Ed.), vol. 23, no. 8, pp. 1391–1406, 2018, doi: 10.2741/4651.PMID:29293441.
  • [17] M. Levin, “Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer,”Cell, vol. 184, no. 8, pp. 1971–1989, 2021, doi: 10.1016/j.cell.2021.02.034.
  • [18] A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, pp. 1–12, 2016, doi: 10.1186/s13287-016-0312-5.
  • [19] D. Stratton, M. Malibha-Pinchbeck, and J. Inal, “Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage,” Biochem. Biophys. Res. Commun., vol. 626, pp. 192–199, 2022, doi: 10.1016/j.bbrc.2022.08.035.
  • [20] M. Kakikawa and S. Yamada, “Effect of Extremely LowFrequency (ELF) Magnetic Fields on Anticancer Drugs Potency,” IEEE Trans. Magnet., vol. 48, no. 11, pp. 2869–2872, 2012, doi: 10.1109/TMAG.2012.2200881.
  • [21] U. Lucia et al., “The exposure to extremely low frequency electromagnetic-fields inhibits the growth and potentiates the sensitivity to chemotherapy of bidimensional and tridimensional human osteosarcoma models,” Biomed. Pharmacother., vol. 177, pp. 1–8, 2024, doi: 10.1016/j.biopha.2024.117162.
  • [22] J. Sun et al., “Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism,” Sci. Rep., vol. 13, pp. 1–12, 2023, doi: 10.1038/s41598-023-34144-5.
  • [23] Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), 1999/519/EC, Official Journal of the European Communities, L199/59, 1999.
  • [24] C. Consales et al., “Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures,” Mol. Neurobiol., vol. 58, no. 4, pp. 1634–1649, 2021, doi: 10.1007/s12035-020-02192-x.
  • [25] W.H. Hayt Jr. and J.A. Buck, Engineering Electromagnetics. McGraw-Hill Copyright 2012.
  • [26] M. Basharat, M. Ding, H. Cai, Y. Li, and J. Fang, “Design and Analysis of Multilayer Solenoid Coil for Faraday Modulator,” MATEC Web Conf., 2017, vol. 114, pp. 1–9, doi: 10.1051/matecconf/201711404004.
  • [27] U. Tietze, C. Schenk, and E. Gamm, Electronic Circuits Handbook for Design and Application. 2nd ed.; Springer, Germany, 2011.
  • [28] P. Horowitz and W. Hill, The Art of Electronics. 3rd ed., Cambridge University Press, 2015.
  • [29] M. Ghasemi, T. Turnbull, S. Sebastian, and I. Kempson, “The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis,” Int. J. Mol. Sci., vol. 22, no. 23, p. 12827, 2021, doi: 10.3390/ijms222312827.
  • [30] R. Bułdak et al., “Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells,” Bioelectromagnetics, vol. 33, no. 8, pp. 641–651, 2012, doi: 10.1002/bem.21732.
  • [31] L. Bergandi et al., “The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift,” Biochim. Biophys. Acta-Mol. Cell Res., vol. 1866, no. 9, pp. 1389–1397, 2019, doi: 10.1016/j.bbamcr.2019.05.006.[32] M. Elexpuru-Zabaleta et al., “A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure,” Mol. Biol. Rep., vol. 50, no. 2, pp. 1005–1017, 2023, doi: 10.1007/s11033-022-08069-7.
  • [33] S. Tofani et al., “Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma,” Pharmacol. Res., vol. 48, no. 1, pp. 83–90, 2003, PMID: 12770519.
  • [34] F. Sanie-Jahromi and M. Saadat, “Different profiles of the mRNA levels of DNA repair genes in MCF-7 and SH-SY5Y cells after treatment with combination of cisplatin, 50-Hz electromagnetic field and bleomycin,” Biomed. Pharmacother., vol. 94, pp. 564– 568, 2017, doi: 10.1016/j.biopha.2017.07.115.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1242f14c-3a2e-4f5c-82b9-9c7ce7e00280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.