PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailored Al2O3-Al2TiO5-TiO2 Composite Ceramics from different Titanium Precursors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Al2 O3 -Al2 TiO5 -TiO2 composites can be obtained by the infiltration of molecular titanium precursors into presintered α-Al2 O3 (corundum) cylinders. Two titanium tetra alkoxides, and two dialkoxy titanium bis (acetylacetonates) serve as precursors for TiO2 (rutile) and Al2 TiO5 (tialite). The precursors were infiltrated as ethanolic solutions. After sintering at 1550, 1600, and 1650°C, the prepared ceramics’ properties were investigated by SEM, in-situ HT-XRD, and conventional XRD. Titanium tetraisopropoxide leads to the highest content of Al2 TiO5 in the composite. The more reactive the precursor, considering the Al2 O3 /precursor interface, the lower and more anisotropic the grain growth, the more homogeneous is the TiO2 contribution and the higher is the content of Al2 TiO5 . Raising the sintering temperature causes an increase of the crystalline Al2 TiO5 content as well as of the grain growth. Moreover, the reactivity of the precursor molecule influences the Ti/(Al+Ti) ratio in the obtained tialite phase.
Słowa kluczowe
Twórcy
autor
  • Profactor GmbH, Department Functional Surfaces and Nanostructures, im Stadtgut A2, 4407 Steyr-Gleink, Austria
autor
  • Materials Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria
autor
  • Materials Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria
  • Joanneum Research Forschungsgesellschaft mbH, Institute for Surface Technologies and Photonics, Leobner Strasse 94, 8712 Niklasdorf, Austria
  • Profactor GmbH, Department Functional Surfaces and Nanostructures, im Stadtgut A2, 4407 Steyr-Gleink, Austria
Bibliografia
  • [1] A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, M. H. Bocanegra-Bernal, On the wide range of mechanical properties of ZTA and ATZ based dental ceramic by varying Al2O3 and ZrO2 content, Int. J. Refract. Met. H 27, 962-970 (2009)
  • [2] C. Oelgardt, J. Anderson, J. G. Heinrich, G. L. Messing, Sintering, microstructure and mechanical properties of Al2O3-Y2O3-ZrO2(AYZ) eutectic composition ceramic microcomposites, J. Eur. Ceram. Soc. 30, 649-656 (2010).
  • [3] T. Hernandez, M. C. Bautista, The role of the synthesis route to obtain densified TiO2-doped alumina ceramics, J. Eur. Ceram. Soc. 25, 663-672 (2005).
  • [4] Y. Ohya, S. Yamamoto, T. Ban, M. Tanaka, S. Kitaoka, Thermal expansion and mechanical properties of self-reinforced aluminum titanate ceramics with elongated grains, J. Eur. Ceram. Soc. 37, 1673-1680 (2017).
  • [5] D. Di Marco, K. Drissi, P. M. Geffroy N. Delhote, O. Tantot, S. Verdeyme, Dielectric properties of alumina doped with TiO2 from 13 to 73 GHz, J. Eur. Ceram. Soc. 37, 641-646 (2017).
  • [6] R. Papitha, M. B. Suresh, D. Das, R. Johnson, Effect of microcracking on the thermal conductivity and thermal expansion of tialite (Al2TiO5) ceramics, Process Appl. Ceram. 7, 143-146 (2013).
  • [7] I. J. Kim, L. J. Gauckler, Excellent thermal shock resistant materials with low thermal expansion coefficients, J. Ceram. Process Res. 9, 240-245 (2008).
  • [8] Y. Ohya, Z. Nakagawa, K. Hamano, Grain-Boundary Microcracking Due to Thermal Expansion Anisotropy in Aluminum Titanate Ceramics, J. Am. Ceram. Soc. 70, C-184-C-186 (1987).
  • [9] G. Fielitz, G. Borchardt, S. Ganschow, R. Bertram, A. Markwitz, 26Al tracer diffusion in titanium doped single crystalline α-Al2O3, Solid State Ionics 179, 373-379 (2008).
  • [10] Y. Zu, G. Chen,X. Fu, K. Luo, C. Wang, S. Song, W. Zhao, Effects of liquid phases on densification of TiO2-doped Al2O3-ZrO2 composite ceramics, Ceram. Int. 40, 3989-3993 (2014)
  • [11] G. Chen, Y. Zu, J. Luo, X. Fu, W. Zhou, Microstructure and superplastic behavior of TiO2-doped Al2O3-ZrO2 (3Y) composite ceramics, Mater. Sci. Eng. 554, 6-11 (2012).
  • [12] I. M. Low, Z. Oo, In Situ Diffraction Study of Self-Recovery in Aluminum Titanate. J. Am. Ceram. Soc. 91, 1027-1029 (2000).
  • [13] I. M. Low, Z. Oo, Reformation of phase composition in decomposed aluminum titanate, Mater. Chem. Phys. 111, 9-12 (2008).
  • [14] I. J. Kim, L. J. Gauckler, Formation, Decomposition and Thermal Stability of Al2TiO5 Ceramics, J. Ceram. Sci. Technol. 3, 49-59 (2012).
  • [15] E. Kato, K. Daimon, Y. Kobayashi, Factors Affecting Decomposition Temperature of b-Al2TiO5. J. Ceram. Soc. Japan 86, 626-631 (1978).
  • [16] V. Buscaglia, P. Nanni, Decomposition of Al2TiO5 and Al2(1-x)MgxTi(1+x)O5 ceramics, J. Am. Ceram. Soc. 81, 2645-2653 (1998).
  • [17] H. L. Lee, J. Y. Jeong, H. M. Lee, Preparation of Al2TiO5 from alkoxides and the effects of additives on its properties, J. Mater. Sci. 32, 5687-5695 (1997).
  • [18] M. Li, F. Chen, Q. L. Shen, L. Zhang, Fabrication and thermal properties of Al2TiO5/Al2O3 composites, Mater. Sci.-Poland. 28, 663-670 (2010).
  • [19] S. J. Kalita, V. Somani, Al2TiO5-Al2O3-TiO2 nanocomposite: Structure, mechanical property and bioactivity studies, Mater. Res. Bull. 45, 1803-1810 (2010).
  • [20] V. Somani, Alumina-Aluminum titanate-titania nanocomposite: Synthesis, sintering studies, assessment of bioactivity and its mechanical and electrical properties Master Thesis. Orlando, USA: University of Central Florida, 2006.
  • [21] M. Sobhani, T. Ebadzadeh, M. R. Rahimipour, Formation and densification behavior of reaction sintered alumina-20 wt.% aluminum titanate nano-composites, Int. J. Refract. Met. 47, 49-53 (2014).
  • [22] M. Singh, I. M. Low, Depth Profiling of phase composition and preferred orientation in a graded corundum-mullite-aluminum titanate hybrid using X-ray and synchrotron radiation diffraction, Mater. Res. Bull. 37, 1279-1291 (2002).
  • [23] S. Taktak, M. S. Baspinar, Wear and friction behaviour of alumina/mullite composite by sol-gel infiltration technique. Mater. Design 26, 459-464 (2005).
  • [24] Z. Chengxin, C. Feng, X. Yang, P. Zhihang, Thermal shock resistance of Al2O3/SiO2 composites by sol-gel, Ceramics International 45, 11270-11274 (2019).
  • [25] C. Ortmann, T. Oberbach, H. Richter, P. Puhlfürß, Preparation and characterization of ZTA bioceramics with and without gradient in composition, J. Eur. Ceram. Soc. 32, 777-785 (2012).
  • [26] S. Pratapa, I. M. Low, B. H. O'Connor, Infiltration-processed, functionally graded aluminium titanate/zirconia-alumina composite, J. Mater. Sci. 33, 3037-3045 (1998).
  • [27] M. Stumpf, N. Travitzky, P. Greil, T. Fey, Sol-gel infiltration of complex cellular indirect 3D printed alumina, J. Eur. Ceram. Soc. 38, 3603-3609 (2018).
  • [28] N. C. Ramos, M. R. Kaizer, T.M.B. Campos, J. Kim, Y. Zhang, R. M. Melo, Silica-Based Infiltrations for Enhanced Zirconia-Resin Interface Toughness, Journal of Dental Research 98, 423-429 (2019).
  • [29] C. Hunt, M. Zachariasen, D. Driscoll, S. Sofie, R. Walker, Degradation rate quantification of solid oxide fuel cell performance with and without Al2TiO5 addition, International Journal of Hydrogen Energy 43, 15531-15536 (2018).
  • [30] X. Chen, Q. Feng, H. Zhou, S. Dong, J. Wang, Y. Cao, Y. Kan, D. Ni, Ablation behavior of three-dimensional Cf/SiC-ZrC-ZrB2 composites prepared by a joint process of sol-gel and reactive melt infiltration, Corrosion Science 134, 49-56 (2018).
  • [31] M. W. Jung, H. J. Oh, J. C. Yang, Y. G. Shul, Structural Investigation of the Hydrolysis-Condensation Process of Modified Titanium Isopropoxide, Bull. Korean. Chem. Soc. 20, 1394-1398 (1999).
  • [32] Bruker AXS, TOPAS V4 General profile and structure analysis software for powder diffraction data, Karlsruhe, 2005.
  • [33] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65-71 (1969).
  • [34] Standard Reference Material 660a Lanthanum Hexaboride Powder Diffraction, National Institute of Standards & Technology, Gaithersburg, Maryland, (2000).
  • [35] R. W. Cheary, A. A. Coelho, J. P. Cline, Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers, J. Res. Natl. Inst. Stand. 109, 1-25 (2004)
  • [36] Diffrac plus, TOPAS/TOPAS R/TOPAS P, Version 2.1, User’s Manual. Karlsruhe; 2005.
  • [37] D. Balzar, H. Ledbetter, Accurate modeling of size and strain broadening in the Rietveld refinement: The "double-Voigt" approach, Advances in X-Ray Analysis Plenum Press, New York, 397-404 (1995).
  • [38] G. K. Williamson, W. H. Hall, X-ray line broadening from filed aluminum and wolfram, Acta Metall. 1, 22-31 (1953).
  • [39] International Tables for Crystallography, Volume B, Reciprocal Space, Edited by U. Shmueli, Second online edition, International Union of Crystallography (2010).
  • [40] L. Léon-Reina, M. Garcıá-Maté, G. Alvarez-Pinazo, I. Santacruz, O. Vallcorba, A. G. De la Torre, M.A.G. Aranda, Accuracy in Rietveld quantitative phase analysis: A comparative study of strictly monochromatic Mo and Cu radiations, J. Appl. Cryst. 49, 722-735 (2016).
  • [41] ASTM E112-13, Standard Test Methods for Determining Average Grain Size, ASTM International, (2013).
  • [42] S. Palmqvist, Occurrence of crack formation during Vickers indentation as a measure of the toughness of hard materials, Archiv für das Eisenhüttenwesen 33, 629-333 (1962).
  • [43] M. E. Simonsen, E. G. Søgaard, Sol-gel reactions of titanium alkoxides and water: Influence of pH and alkoxy group on cluster formation and properties of the resulting products. J. Sol-Gel Sci. Techn. 53, 485-497 (2010).
  • [44] C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors, J. Non-Cryst. Solids 100, 65-76 (1988).
  • [45] C. Zhou, J. Ouyang, B. Yang, Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells, Mater. Res. Bull. 48, 4351-4356 (2013).
  • [46] I. Oja Acik, J. Madarász, M. Krunks, K. Tõnsuaadu, D. Janke, G. Pokol, L. Niinistö, Thermoanalytical studies of Titanium(IV) acetylacetonate xerogels with emphasis on evolved gas analysis, J. Therm. Anal. Calorim. 88, 557-563 (2007).
  • [47] J. Blanchard, M. In, B. Schaudel, C. Sanchez, Hydrolysis and Condensation Reactions of Transition Metal Alkoxides: Calorimetric Study and Evaluation of the Extent of Reaction, Eur. J. Inorg. Chem. 8, 1115-1127 (1998).
  • [48] A. Kebbede, G. L. Messing, A. H. Carim, Grain boundaries in titania-doped alpha-alumina with anisotropic microstructure, J. Am. Ceram. Soc. 80, 2814-2820 (1997).
  • [49] R. Naghizadeh, H. R. Rezaie, F. Golestani-Fard, The influence of composition, cooling rate and atmosphere on the synthesis and thermal stability of aluminum titanate, Mater. Sci. Eng. B-Adv. 157, 20-25 (2009).
Uwagi
EN
This work was supported by the Austrian Federal Government (in particular from the Bundes ministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft, Familie und Jugend, represented by Österreichische Forschungsförderungsge sellschaft mbH (FFG) within the project "SOLDOT" (grant number #834189).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1241b60e-dfa1-4983-bc30-f014cd0b22cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.