PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ongoing monitoring of liquid fuel quality at storage facilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The newly developed method employs spectral analysis to evaluate fuel quality continuously. Unlike traditional approaches, it eliminates the need for sampling and laboratory analysis, provides real-time results, facilitates rapid decision-making regarding fuel quality, and enhances operational efficiency. A comparative analysis of the new method with laboratory tests carried out following ISO standards demonstrated its effectiveness in the assessment of liquid fuels containing biocomponents. The determined age in sample ageing index is highly correlated with the oxidative stability of the Diesel oil and resin content for Pb95 and Pb98. Statistically, significant transformation functions were developed. The results confirm the ability of the method to rapidly identify substandard fuels, thereby accelerating their withdrawal from the market. The implementation of this spectral analysis-based method represents a significant advance in fuel quality assessment. Its continuous monitoring capability and real-time reporting distinguish it from conventional approaches, thereby offering practical benefits for fuel management. Ensuring timely interventions to maintain quality standards are supported by enabling the prompt detection of degraded fuels. The applicability of this method to state fuel reserves and petrol stations underlines its usefulness in improving fuel quality control measures. Overall, its introduction offers both economic and environmental benefits to the transportation sector.
Rocznik
Tom
Strony
259--282
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
Bibliografia
  • 1. Aarhaug Thor A., Ole S. Kjos, Alain Ferber, Jong Pyong Hsu, Thomas Bacquart. 2020. “Mapping of Hydrogen Fuel Quality in Europe.” Frontiers in Energy Research 8 (November). DOI: https://doi.org/10.3389/fenrg.2020.585334.
  • 2. Abramovič Helena, Veronika Abram. 2005. “Physico-Chemical Properties, Composition and Oxidative Stability of Camelina Sativa Oil.” Food Technology and Biotechnology 43(1): 63-70.
  • 3. Amaral Bruna Elói do, Daniel Bastos de Rezende, Vânya Márcia Duarte Pasa. 2020. “Aging and Stability Evaluation of Diesel/ Biodiesel Blends Stored in Amber Polyethylene Bottles under Different Humidity Conditions.” Fuel 279 (November): 118289. DOI: https://doi.org/10.1016/j.fuel.2020.118289.
  • 4. Blaabjerg F., R. Teodorescu, M. Liserre, A.V. Timbus. 2006. “Overview of Control and Grid Synchronization for Distributed Power Generation Systems.” IEEE Transactions on Industrial Electronics 53(5): 1398-1409. DOI: https://doi.org/10.1109/TIE.2006.881997.
  • 5. Bojkovic, Aleksandar, Florence H. Vermeire, Maja Kuzmanović, Hang Dao Thi, and Kevin M. Van Geem. 2022. “Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products.” Energy & Fuels 36 (1): 6-59. DOI: https://doi.org/10.1021/acs.energyfuels.1c02355.
  • 6. Borecki Michał, Piotr Doroz, Jan Szmidt, Michael L. Korwin-Pawłowski, Andrzej Kociubiński, and Mariusz Duk. 2013. “Sensing Method and Fiber Optic Capillary Sensor for Testing the Quality of Biodiesel Fuel.” The Fourth International Conference on Sensor Device Technologies and Applications: 19-24. Barcelona.
  • 7. Correia Radigya M., Eloilson Domingos, Vagne M. Cáo, Brenda R.F. Araujo, Sthefany Sena, Layla U. Pinheiro, André M. Fontes, et al. 2018. “Portable near Infrared Spectroscopy Applied to Fuel Quality Control.” Talanta 176 (January): 26-33. DOI: https://doi.org/10.1016/j.talanta.2017.07.094.
  • 8. Danek B., M. Pałuchowska. 2010. “Zmiany stabilności chemicznej benzyny silnikowej zawierającej do 10% (V/V) bioetanolu, podczas jej przechowywania w warunkach laboratoryjnych.” Nafta-Gaz 66(4): 297-301. [In Polish: “Changes in the chemical stability of motor gasoline containing up to 10% (V/V) of bioethanol during its storage under laboratory conditions. ”]. Available at: https://pbn.nauka.gov.pl/core/#/publication/view/60e730582467f01e9315448e/b79e0350-69fb-4b34-9ede-5b09f6aae2ac.
  • 9. Debe Mark K. 2012. “Electrocatalyst Approaches and Challenges for Automotive Fuel Cells.” Nature 486(7401): 43-51. DOI: https://doi.org/10.1038/nature11115.
  • 10. Dziubak Tadeusz. 2016. “Operating Fluids Contaminantions and Their Effect on the Wear of Elements of Motor Vehicle`s Combustion Engine.” The Archives of Automotive Engineering – Archiwum Motoryzacji 72(2). DOI: https://doi.org/10.14669/AM.VOL72.ART3.
  • 11. Felizardo Pedro, Patrícia Baptista, Margarida Sousa Uva, José C. Menezes, M. Joana Neiva Correia. 2007. “Monitoring Biodiesel Fuel Quality by near Infrared Spectroscopy.” Journal of Near Infrared Spectroscopy 15(2): 97-105. DOI: https://doi.org/10.1255/jnirs.714.
  • 12. Ferrão Marco Flôres, Mariela de Souza Viera, Rubén Edgardo Panta Pazos, Daniela Fachini, Annelise Engel Gerbase, and Luciano Marder. 2011. “Simultaneous Determination of Quality Parameters of Biodiesel/Diesel Blends Using HATR-FTIR Spectra and PLS, IPLS or SiPLS Regressions.” Fuel 90(2): 701-6. DOI: https://doi.org/10.1016/j.fuel.2010.09.016.
  • 13. Flamarz Al-Arkawazi, Shamil Ahmed. 2019. “The Gasoline Fuel Quality Impact on Fuel Consumption, Air-Fuel Ratio (AFR), Lambda (λ) and Exhaust Emissions of Gasoline-Fueled Vehicles.” Edited by Claudio Cameselle. Cogent Engineering 6(1). DOI: https://doi.org/10.1080/23311916.2019.1616866.
  • 14. Gaylarde Christine C., Fátima M. Bento, and Joan Kelley. 1999. “Microbial Contamination of Stored Hydrocarbon Fuels and Its Control.” Revista de Microbiologia 30(1): 01-10. DOI: https://doi.org/10.1590/S0001-37141999000100001.
  • 15. He Jian, Qian Qiang, Shima Liu, Ke Song, Xianwu Zhou, Jie Guo, Bo Zhang, Changzhi Li. 2021. “Upgrading of Biomass-Derived Furanic Compounds into High-Quality Fuels Involving Aldol Condensation Strategy.” Fuel 306 (December): 121765. DOI: https://doi.org/10.1016/j.fuel.2021.121765.
  • 16. Heywood John B. 2018. Internal Combustion Engine Fundamentals. 2nd ed. Available at: https://www.accessengineeringlibrary.com/content/book/9781260116106.
  • 17. Hirota Keiko, and Shigeru Kashima. 2020. “How Are Automobile Fuel Quality Standards Guaranteed? Evidence from Indonesia, Malaysia and Vietnam.” Transportation Research Interdisciplinary Perspectives 4 (March): 100089. DOI: https://doi.org/10.1016/j.trip.2019.100089.
  • 18. Jeon Cheol Hwan, Cheon Kyu Park, Byung Ki Na, and Jae Kon Kim. 2017. “Properties of Gasoline Stored in Various Containers.” Energies 10(9). DOI: https://doi.org/10.3390/en10091307.
  • 19. Jerzy Kawlas. 2019. “Evaluation of Ageing of Motor Fuel on Their Useful Properties.” Katowice. Available at: https://delibra.bg.polsl.pl/dlibra/show-content/publication/edition/58892?ID=58892.
  • 20. Johnson David W. 2017. “Applications of Mass Spectrometric Techniques to the Analysis of Fuels and Lubricants.” In Mass Spectrometry. InTech. DOI: https://doi.org/10.5772/intechopen.68592.
  • 21. Khodabakhshikoulaei Azar, Hassan Sadrnia, Mohammad Tabasizadeh, Barat Ghobadian, and Vijaya Raghavan. 2022. “Bioethanol Fuel Quality Assessment Using Dielectric Spectroscopy.” Biofuels 13(6): 693-701. DOI: https://doi.org/10.1080/17597269.2021.1894002.
  • 22. Kiefer Johannes. 2015. “Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy.” Energies 8(4): 3165-97. DOI: https://doi.org/10.3390/en8043165.
  • 23. Knothe Gerhard. 1999. “Rapid Monitoring of Transesterification and Assessing Biodiesel Fuel Quality by Near‐infrared Spectroscopy Using a Fiber‐optic Probe.” Journal of the American Oil Chemists’ Society 76(7): 795-800. DOI: https://doi.org/10.1007/s11746-999-0068-5.
  • 24. Kude Vivek, Anita Patil. 2017. “Detection of Fuel Adulteration in Real Time Using Optical Fiber Sensor and Peripheral Interface Controller.” International Journal of Optics and Photonics 11(2): 95-102. DOI: https://doi.org/10.18869/acadpub.ijop.11.2.95.
  • 25. Lack D.A., J.J. Corbett. 2012. “Black Carbon from Ships: A Review of the Effects of Ship Speed, Fuel Quality and Exhaust Gas Scrubbing.” Atmospheric Chemistry and Physics 12(9): 3985-4000. DOI: https://doi.org/10.5194/acp-12-3985-2012.
  • 26. Lalramnghaka J., H.H. Thanga, and Lal Biaktluanga. 2023. “Evaluation of Gasoline Fuel Quality Using FTIR Spectroscopy and Multivariate Technique: A Case Study in Aizawl City.” Petroleum Science and Technology 41(6): 677-99. DOI: https://doi.org/10.1080/10916466.2022.2091596.
  • 27. Lewis B.J., W.T. Thompson, F. Akbari, D.M. Thompson, C. Thurgood, J. Higgs. 2004. “Thermodynamic and Kinetic Modelling of Fuel Oxidation Behaviour in Operating Defective Fuel.” Journal of Nuclear Materials 328(2-3): 180-96. DOI: https://doi.org/10.1016/j.jnucmat.2004.04.336.
  • 28. Lima J.A.P., M.S.O. Massunaga, H. Vargas, L.C.M. Miranda. 2004. “Photothermal Detection of Adulterants in Automotive Fuels.” Analytical Chemistry 76(1): 114-19. DOI: https://doi.org/10.1021/ac034306a.
  • 29. Matijošius Jonas, Edgar Sokolovskij. 2009. “Research into the quality of fuels and their biocomponents.” Transport 24 (3): 212-17. DOI: https://doi.org/10.3846/1648-4142.2009.24.212-217.
  • 30. Mendonça Lucas Gonçalves Dias, Delson Torikai, Ricardo Cury Ibrahim, Eliphas Wagner Simões, Nilton Itiro Morimoto. 2007. “Interdigitated Capacitive Sensor to Verify the Quality of Ethanol Automotive Fuel.” In International Congress of Mechanical Engineering.
  • 31. Nelson Peter F., Anne R. Tibbett, Stuart J. Day. 2008. “Effects of Vehicle Type and Fuel Quality on Real World Toxic Emissions from Diesel Vehicles.” Atmospheric Environment 42(21): 5291-5303. DOI: https://doi.org/10.1016/j.atmosenv.2008.02.049.
  • 32. Owczuk Marlena, and Krzysztof Kołodziejczyk. 2015. “Liquid Fuel Ageing Processes in Long-Term Storage Conditions.” In Storage Stability of Fuels. InTech. DOI: https://doi.org/10.5772/59799.
  • 33. Premier Giuliano C., Jung Rae Kim, Iain Michie, Richard M. Dinsdale, Alan J. Guwy. 2011. “Automatic Control of Load Increases Power and Efficiency in a Microbial Fuel Cell.” Journal of Power Sources 196(4): 2013-19. DOI: https://doi.org/10.1016/j.jpowsour.2010.09.071.
  • 34. Qi Fei, and Sunghwan Kim. 2022. “Virtual Special Issue of Recent Advances in Analysis of Fuels and Products by Advanced Mass Spectrometry.” Energy & Fuels 36(3): 1151-54. DOI: https://doi.org/10.1021/acs.energyfuels.2c00147.
  • 35. Regulation the Minister of Economy of 9 October 2015 on Quality Requirements for Liquid Fuels. 2015. Poland.
  • 36. Rüger Christopher P., Ole Tiemann, Anika Neumann, Thorsten Streibel, Ralf Zimmermann. 2021. “Review on Evolved Gas Analysis Mass Spectrometry with Soft Photoionization for the Chemical Description of Petroleum, Petroleum-Derived Materials, and Alternative Feedstocks.” Energy & Fuels 35(22): 18308-32. DOI: https://doi.org/10.1021/acs.energyfuels.1c02720.
  • 37. Sibilieva Olena, Sofiia Dokshyna, and Petro Topilnytskyi. 2024. “International Requirements and Modern State in Sphere of Motor Fuels Quality Control: Basic Principles of Monitoring and Control.” In Boichenko S., A. Zaporozhets, A. Yakovlieva, I. Shkilniuk (eds). Modern Technologies in Energy and Transport. Studies in Systems, Decision and Control 510: 249-72. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-44351-0_13.
  • 38. Silva Jilliano B., Josue S. Almeida, Rodrigo V. Barbosa, Glauber J. T. Fernandes, Ana C. F. Coriolano, Valter J. Fernandes, Antonio S. Araujo. 2021. “Thermal Oxidative Stability of Biodiesel/Petrodiesel Blends by Pressurized Differential Scanning Calorimetry and Its Calculated Cetane Index.” Processes 9(1): 174. DOI: https://doi.org/10.3390/pr9010174.
  • 39. Squissato André L., Eduardo S. Almeida, Sidnei G. Silva, Eduardo M. Richter, Alex D. Batista, Rodrigo A.A. Munoz. 2018. “Screen-Printed Electrodes for Quality Control of Liquid (Bio)Fuels.” TrAC Trends in Analytical Chemistry 108 (November): 210-20. DOI: https://doi.org/10.1016/j.trac.2018.08.024.
  • 40. Vasileiadou Agapi, Stamatis Zoras, and Andreas Iordanidis. 2021. “Fuel Quality Index and Fuel Quality Label: Two Versatile Tools for the Objective Evaluation of Biomass/Wastes with Application in Sustainable Energy Practices.” Environmental Technology & Innovation 23 (August): 101739. DOI: https://doi.org/10.1016/j.eti.2021.101739.
  • 41. Wardoyo D., A. Wulandari, Rahmat Firdaus, Eko Arif Syaefudin. 2023. “Effect of Storage Time of Boosted Pertalite Fuel on Its Physical Properties to Improve Performance on a Single Cylinder 108.2 Cc Petrol Engine.” Evergreen 10(3): 1991-96. DOI: https://doi.org/10.5109/7151763.
  • 42. Wielligh A.J., N.D.L. Burger, T.L. Wilcocks. 2003. “Diesel Engine Failures Due to Combustion Disturbances, Caused by Fuel with Insufficient Lubricity.” Industrial Lubrication and Tribology 55(2): 65-75. DOI: https://doi.org/10.1108/00368790310470895.
  • 43. Xu Jun, Qichen He, Zhe Xiong, Yun Yu, Shu Zhang, Xun Hu, Long Jiang, et al. 2021. “Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives.” Energy & Fuels 35(4): 2870-2913. DOI: https://doi.org/10.1021/acs.energyfuels.0c03298.
  • 44. Xu Lujiang, Shijia Chen, He Song, Yang Liu, Chenchen Shi, and Qiang Lu. 2020. “Comprehensively Utilization of Spent Bleaching Clay for Producing High Quality Bio-Fuel via Fast Pyrolysis Process.” Energy 190 (January): 116371. DOI: https://doi.org/10.1016/j.energy.2019.116371.
  • 45. Yue Xin, Ye Wu, Jiming Hao, Yuan Pang, Yao Ma, Yi Li, Boshi Li, Xiaofeng Bao. 2015. “Fuel Quality Management versus Vehicle Emission Control in China, Status Quo and Future Perspectives.” Energy Policy 79 (April): 87-98. DOI: https://doi.org/10.1016/j.enpol.2015.01.009.
  • 46. Zhang Xinge, Mark Robertson, Cyrille Deĉes-Petit, Wei Qu, Olivera Kesler, Radenka Maric, and Dave Ghosh. 2007. “Internal Shorting and Fuel Loss of a Low Temperature Solid Oxide Fuel Cell with SDC Electrolyte.” Journal of Power Sources 164(2): 668-77. DOI: https://doi.org/10.1016/j.jpowsour.2006.10.087.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12417611-6f9c-477f-b14a-7b52c9fa4325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.