PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the ground granulated blast furnaceslag on the pore structure of concrete

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study is to analyze effect of ground granulated blast furnace slag (GGBFS) in concrete on the pore structure, this research will contribute to the knowledge regarding the use of GGBFS as a cementitious material in terms of the future reference and potential improvement to the properties of concrete. To this aim, on the one hand a control specimens (CS) and another samples with 40% and 60% of GGBFS as replacement cement with moist cured at 20°C, 27°C, and cured at site. The compressive strength and the Mercury intrusion porosimetry (MIP) test were done. The result indicates that the strength of concrete with GGBFS at early ages tend to be lower in comparison with the CS. However, the GGBFS reaction plays important roles at the later ages. The samples cured at higher temperature produce higher strength value. The total pore volume (TPV) of the concrete use GGBFS decreases with increasing age.
Rocznik
Strony
203--214
Opis fizyczny
Bibliogr. 21 poz., il., tab.
Twórcy
autor
  • Sangga Buana University, Java, Indonesia
Bibliografia
  • 1. Crossin, E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 95: 101-108, 2015
  • 2. P Saranya*, Praveen Nagarajan, A P Shashikala, ”Eco-friendly GGBS Concrete: A State-of-The-Art Review”, IOP Conf. Series: Materials Science and Engineering 330, 2018
  • 3. H. A. Abola, C. K. King’ Ondu, K. N. Njan, and A. L. Mrema, “Measurement of pozzolanic activity index of scoria, pumice, and rice hush ash as potential supplementary cementitious materials for Portland cement”, Advances in Civil Engineering, vol. 2017, Article ID 6952645, 13 pages, 2017.
  • 4. Neville, A. M., ”Properties of Concrete’, Fifth Edition, Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England, 2011
  • 5. Kumar, R., & Bhattacharjee, B. Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 33(1), 155-164, 2003
  • 6. Washburn, E. W., "The Dynamics of Capillary Flow". Physical Review. 17 (3): 273, 1921
  • 7. Khatib J., Hibbert J., Khatib J. Selected engineering properties of concrete incorporating slag and metakaolin. Constr. Build. Mater. 19:460-472, 2005
  • 8. Punnaman Norrarat, Weerachart Tangchirapat, Smith Songpiriyakij, and Chai Jaturapitakkul, "Evaluation of Strengths from Cement Hydration and Slag Reaction of Mortars Containing High Volume of Ground River Sand and GGBF Slag", Advances in Civil Engineering, Volume 2019
  • 9. S.C. Pala, A. Mukherjeeb, S.R. Pathakc, “Investigation of hydraulic activity of ground granulated blast furnace slag in concrete", Cement and Concrete Research 33: 1481-1486, 2003
  • 10. ASTM C989, Standard Specification for Slag Cement for Use in Concrete and Mortars, American Society for Testing and Materials, West Conshohocken, PA, USA, 2014.
  • 11. ASTM C125-13b, “Standard Terminology Relating to Concrete and Concrete Aggregates,” West Conshohocken, PA: ASTM International, 2013.
  • 12. ASTM C595, Standard Specification for Blended Hydraulic Cements, American Society for Testing and Materials, West Conshohocken, PA, USA, 2014.
  • 13. ASTM C1157, Standard Performance Specification for Hydraulic Cement, American Society for Testing and Materials, West Conshohocken, PA, USA, 2014.
  • 14. Young Cheol Choi, Jyoung Kim, Seongcheol Cho,"Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag", Construction and Building Materials Vol. 37, 15 April 2017, Pages 96-103, 2017
  • 15. Vu, T.H.; Gowripalan, N.; De Silva, P.; Paradowska, A.Z.; Garbe, U.; Kidd, P.; Sirivivatnanon, V. Assessing carbonation in one-part fly ash/slag geopolymer mortar: Change in pore characteristics using the state-of-theart technique neutron tomography. Cem. Concr. Compos. 2020,
  • 16. Vineet, S.; Karen, S.; Bishwajit, B.; Shashank, B. Changes in microstructure characteristics of cement paste on carbonation. Cem. Concr. Res. 2018, 109, pp. 184-197, 2018
  • 17. Yang Song, Jun-wen Zhou,Zheng-ning Bian, and Guo-zhong Dai, "Pore Structure Characterization of Hardened Cement Paste by Multiple Methods", Advances in Materials Science and Engineering, Vol. 2019 Article ID 3726953, 2019
  • 18. Schiller, K.K. "Porosity and Strength of Brittle Solids (with particular reference to gypsum), in W.H, Walton (ed), ’Mechanical Properties of non Metallic Materials’, Butterworth, London, pp. 35-50, 1958
  • 19. Feldman, R. F. and Beaudoin, J. J., "Moisture and Strength of Hydrated Cement", Cement and Concrete Research. Vol. 6 pp. 389-400, 1976
  • 20. Xu, G., He, X. & He, Y., "Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites". J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1186-1192, 2018
  • 21. J. Liu and D. Wang, “Application of ground granulate blast furnace slag-steel slag composite binder in a massive concrete structure under severe sulphate attack, ”Advances in Materials Science and Engineering, vol. 2017, Article ID 9493043, 9 pages, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12414ef2-ebc0-4ba5-bb63-ef294d2e5200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.