Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zastosowanie metod bayesowskich do modelowania rozwoju farmakooporności u pacjentów
Języki publikacji
Abstrakty
In this paper, we propose a methodology for using static Bayesian networks (BN) in modeling the development of pharmacoresistance in patients with a diagnosis of epilepsy. Methods for constructing the structure of a static BN, their parametric training, validation, sensitivity analysis and “What-if” scenario analysis are considered. The model was designed in collaboration with expert doctors, as well as expert pharmacologists in the selection and quantification of input and output variables.
W niniejszej pracy zaproponowano metodologię wykorzystania statycznych sieci bayesowskich (BN) w modelowaniu rozwoju farmakooporności u pacjentów z rozpoznaniem padaczki. Rozważane są metody konstruowania struktury statycznej BN, jej parametrycznego treningu, walidacji, analizy wrażliwości i analizy scenariuszy "co-jeśli". Model został zaprojektowany we współpracy z ekspertami – lekarzami, a także ekspertami – farmakologami w zakresie doboru i kwantyfikacji zmiennych wejściowych i wyjściowych.
Rocznik
Tom
Strony
77--82
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
- Kherson National Technical University, Kherson, Ukraine
autor
- Astana Medical University, Astana, Kazakhstan
autor
- D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
autor
- Kherson City Psychoneurological Clinic, Kherson, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, Ukraine
autor
- Uzhhorod National University, Uzhhorod, Ukraine
autor
- Kherson National Technical University, Kherson, Ukraine
Bibliografia
- [1] Bates D. W., Kuperman G. J., Wang S., Gandhi T., Kittler A.: Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. Journal of the American Medical Informatics Association 10, 2003, 523–530.
- [2] Castillo E. F., Guti´errez J. M., Hadi A. S.: Sensitivity analysis in discrete Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 27(4), 1997, 412–423.
- [3] Cheeseman P., Kelly M., Taylor W., Freema D., Stutz J.: Bayesian classification. Proceedings of AAAI, St. Paul 1988, 607–611.
- [4] Cooper G. F.: Current research directions in the development of expert systems based on belief networks. Applied Stochastic Models and Data Analysis 5, 1989, 39–52.
- [5] Darwiche A.: A differential approach to inference in Bayesian networks. Proceedings of Uncertainty in Artificial Intelligence 2000, 123–132.
- [6] Hiritis N.: Predictors of pharmacoresistant epilepsy. Epilepsy research 75(2-3), 2007, 192–196.
- [7] Kahane Ph., Berg A., Loscher W.: Current knowledge on basic mechanism of drug resistance. Drug resistant epilepsy, UK John Libbey Eurotext, 2008, 47–57.
- [8] Kawamoto K., Houlihan C. A., Balas E. A., Lobach D. F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journa 330, 2005, 765–773.
- [9] Kipersztok O., Wang H.: Another look at sensitivity of Bayesian networks to imprecise probabilities. Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics 2001, 226–232.
- [10] Kjærulff U., van der Gaag L. C.: Making sensitivity analysis computationally efficient. Proceedings of Uncertainty in Artificial Intelligence 2000, 317–325.
- [11] Kwan P., Arzimanoglou A., Berg A. T., Brodie M. J.: Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6), 2010, 1069–1077.
- [12] Lucas P. J. F., Boot H., Taal B. G.: Decision-theoretic network approach to treatment management and prognosis. Knowledge-based Systems 11, 1998, 321–330.
- [13] Miller R.: Medical diagnostic decision support systems-past, present and future. Journal of the American Medical Informatics Association 1, 1994, 8–27.
- [14] Musen M. A., Shahar Y., Shortliffe E. H.: Biomedial Informatics: computer applications in health care and biomedicine. Springer, New York 2006, 698–736.
- [15] Osheroff J. A.: Improving medication use and outcomes with clinical decision support: a step-by-step guide. Healthcare Information and Management Systems Society, Chicago 2009.
- [16] Percell G. P.: What makes a good clinical decision support system. British Medical Journal 330, 2005, 740–741.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-124053e0-ab78-47cf-9017-f5c87e6bdf71