Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the work was to carry out experimental research and numerical simulation of microplastic pollution in the Vilnelė River. Six locations were selected for the experimental studies: 3 measurement points and 3 releasers. It was determined that the average concentration of microplastics at the selected measurement points was in the range between 0.10 and 0.42 particles/L. The concentration of microplastics at the selected releasers ranged from 3 to 31.6 particles/L. A morphological analysis of the microplastics was also carried out. Synthetic polymer microplastics were found to be the dominant type among all detected microplastics. The ANSYS software was used for numerical modelling. The Euler–Lagrange method was selected to model the movement of microplastics in river water. It was found that microplastic pollution in the Vilnelė River was mainly lower than in other selected rivers and lakes around the world. The numerical simulation of microplastic pollution in the Vilnelė River provided models that, by depicting the pollution sources, show how far microplastic particles are transported within one hour. These models help identify the most suitable locations for further microplastic research, enable the prediction of pollution levels, and allows other researchers to repeat the research.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
120--137
Opis fizyczny
Bibliogr. 68 poz., fot., rys., wykr.
Twórcy
autor
- Vilnius Tech (Vilnius Gediminas Technical University), Lithuania
autor
- Vilnius Tech (Vilnius Gediminas Technical University), Lithuania
autor
- Vilnius Tech (Vilnius Gediminas Technical University), Lithuania
Bibliografia
- 1. Akdogan, Z., Guven, B. & Kideys, A. E. (2023). Microplastic distribution in the surface water and sediment of the Ergene River. Environmental Research, 234, 116500. DOI:10.1016/j.envres.2023.116500
- 2. Alarming' microplastic pollution in Europe's great rivers. Retrieved from: https://www.france24.com/en/live-news/20250407-alarming-microplastic-pollution-in-europes-great-rivers
- 3. Amrutha, K. & Warrier, A. K. (2020). The first report on the source-to-sink characterisation of microplastic pollution from a riverine environment in tropical India. Science of the Total Environment, 739, 140377. DOI:10.1016/j.scitotenv.2020.140377
- 4. ANSYS Fluent Tutorial Guide (2017). Retrieved from: https://users.abo.fi/rzevenho/ansys%20fluent%2018%20tutorial%20guide.pdf (05.03.2025)
- 5. Babajamaaty, G., Mohammadian, A. & Pilechi, A. (2021, May). Numerical Modeling of Microplastics Fate and Transport in a Stretch of the Fraser River. In Canadian Society of Civil Engineering Annual Conference (pp. 99-107). Singapore: Springer Nature Singapore. DOI:10.1007/978-981-19-0507-0_10
- 6. Baldwin, A. K., Corsi, S. R. & Mason, S. A. (2016). Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology. Environmental Science & Technology, 50, 19, pp. 10377-10385. DOI:10.1021/acs.est.6b02917
- 7. Bruge, A., Dhamelincourt, M., Lanceleur, L., Monperrus, M., Gasperi, J. & Tassin, B. (2020). A first estimation of uncertainties related to microplastic sampling in rivers. Science of the Total Environment, 718, 137319. DOI:10.1016/j.scitotenv.2020.137319
- 8. Büngener, L., Schäffer, S. M., Schwarz, A. & Schwalb, A. (2024). Microplastics in a small river: Occurrence and influencing factors along the river Oker, Northern Germany. Journal of Contaminant Hydrology, 264, 104366. DOI:10.1016/j.jconhyd.2024.104366
- 9. Buwono, N. R., Risjani, Y.& Soegianto, A. (2021). Distribution of microplastics about water quality parameters in the Brantas River, East Java, Indonesia. Environmental Technology & Innovation, 24, 101915. DOI:10.1016/j.eti.2021.101915
- 10. Chanez, L., Rania, D., Fouzia, T., Faouzi, S. & Kheireddine, O. (2024). Evaluation of sediment contamination by macro and microplastics in coastal waters of Southern Mediterranean: a case study of Annaba, Algeria, before and after the COVID-19 pandemic. Archives of Environmental Protection, 50, 2. DOI:10.24425/aep.2024.150549
- 11. Darnu Group. (2021). Vilnios upės tyrimų ataskaita. Retrieved from https://darnugroup.lt/wp-content/uploads/2021/09/Vilnios-upes-tyrimu-ataskaita.pdf
- 12. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N. & Tassin, B. (2016). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12, 5, pp. 592-599. DOI:10.1071/EN14167
- 13. Enfrin, M., Lee, J., Le-Clech, P. & Dumée, L. F. (2020). Nanoplastics in the environment: What we know and what we need to know. Environmental Science: Water Research & Technology, 6, 3, pp. 763-777. DOI:10.1039/C9EW00987G
- 14. European Commission’s Group of Chief Scientific Advisors. (2019). Environmental and Health risks of Microplastic pollution. In Publications Office of the European Union, 2019 (6). DOI:10.2777/54199
- 15. Fatahi, M., Akdogan, G., Dorfling, C. & Van Wyk, P. (2021). Numerical study of microplastic dispersal in simulated coastal waters using cfd approach. Water, 13, 23, 3432. DOI:10.1016/j.psep.2025.106873
- 16. Ferraz, M., Bauer, A. L., Valiati, V. H. & Schulz, U. H. (2020). Microplastic concentrations in raw and drinking water in the Sinos River, southern Brazil. Water (Switzerland), 12, 11, pp. 1-10. DOI:10.3390/w12113115
- 17. Fu, Z., Chen, G., Wang, W. & Wang, J. (2020). Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environmental Pollution, 266, 115098. DOI:10.1016/j.envpol.2020.115098
- 18. Gao, S., Orlowski, N., Bopf, F. K. & Breuer, L. (2024). A review on microplastics in major European rivers. Wiley Interdisciplinary Reviews: Water, 11, 3, e1713. DOI:10.1002/wat2.1713
- 19. Ghadiri, M., Sinka, I. C. & Haxaire, R. (2011). Particle size analysis using the Rosin-Rammler-Sperling-Bennett (RRSB) distribution: A comparison with log-normal. Powder Technology, 208, 1, pp. 23-28. DOI:10.1016/j.powtec.2010.12.005
- 20. Ghiglione, J. F. & ter Halle, A. (2025). Source, fate, and effects of plastic litters in the European land-sea continuum (Editorial). Environmental Science and Pollution Research, 32, 7, pp. 10021-10022. DOI:10.1007/s11356-024-35827-w
- 21. Goh, P. S., Kang, H. S., Ismail, A. F., Khor, W. H., Quen, L. K. & Higgins, D. (2022). Nanomaterials for microplastic remediation from the aquatic environment: Why nano matters? Chemosphere, 299, 134418. DOI:10.1016/j.chemosphere.2022.134418
- 22. Haque, A., Holsen, T. M. & Baki, A. B. (2024). Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Scientific Reports, 14, 1, 6006. DOI:10.1038/s41598-024-56730-x
- 23. He, B., Smith, M., Egodawatta, P., Ayoko, G. A., Rintoul, L. & Goonetilleke, A. (2021). Dispersal and transport of microplastics in river sediments. Environmental pollution, 279, 116884. DOI:10.1016/j.envpol.2021.116884
- 24. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46, 6, pp. 3060-3075. DOI:10.1021/es2031505
- 25. Hildebrandt, L., Zimmermann, T., Primpke, S., Fischer, D., Gerdts, G. & Pröfrock, D. (2021). Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling. Journal of Hazardous Materials, 414, 125482. DOI:10.1016/j.jhazmat.2021.125482
- 26. Hossain, M. S., Rahman, M. S., Uddin, M. N., Sharifuzzaman, S. M., Chowdhury, S. R., Sarker, S. & Nawaz Chowdhury, M. S. (2020). Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere, 238, 124688. DOI:10.1016/j.chemosphere.2019.124688
- 27. Ivleva, N. P., Wiesheu, A. C. & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56, 7, pp. 1720-1739. DOI:10.1002/anie.201606957
- 28. Kabir, S. A., Bhuiyan, M. A., Zhang, G. & Pramanik, B. K. (2025). Use of computational fluid dynamics to model microplastic transport in the stormwater runoff system. Process Safety and Environmental Protection, 106873. DOI:10.1016/j.psep.2025.106873
- 29. Kaimathuruthy, B. J., Jalón-Rojas, I. & Sous, D. (2025). Modelling microplastic dynamics in estuaries: A comprehensive review, challenges and recommendations. EGUsphere. DOI:10.5194/egusphere-2025-529
- 30. Kay, P., Hiscoe, R., Moberley, I., Bajic, L. & McKenna, N. (2018). Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research, 25, pp. 20264-20267. DOI:10.1007/s11356-018-2070-7
- 31. Kim, K., Park, T. & Jeong, H. (2023). Applicability of the WASP8 in simulating river microplastic concentration. Journal of Korea Water Resources Association, 56, 5, pp. 337-345. DOI:10.3741/JKWRA.2023.56.5.337
- 32. Klein, S., Worch, E. & Knepper, T. P. (2015). Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental Science & Technology, 49, 10, pp. 6070-6076. DOI:10.1021/acs.est.5b00492
- 33. Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M. & De France, J. (2019). Microplastics in freshwater and drinking water: Critical review and assessment of data quality. Water Research, 155, pp. 410-422. DOI:10.1016/j.watres.2019.02.054
- 34. Li Yuxuan, Dou Ming, Li Guiqiu, Wang Zhen, Zhou Yuze, & Xing Aoqi. (2025). Hydraulic experiment and numerical simulation of microplastic migration in aquatic environments. China Environmental Science, 45, 3, pp. 1765-1776.
- 35. Lithuanian Hydrometeorological Service. (n.d.). Hydrological conditions and flood data. Retrieved from https://www.meteo.lt
- 36. Liu, F., Olesen, K. B., Borregaard, A. R. & Vollertsen, J. (2019). Microplastics in urban and highway stormwater retention ponds. Science of The Total Environment, 671, pp. 992-1000. DOI:10.1016/j.scitotenv.2019.03.416
- 37. Liu, R. P., Li, Z. Z., Liu, F., Dong, Y., Jiao, J. G., Sun, P. P. & RM, E. W. (2021). Microplastic pollution in the Yellow River, China: Status and research progress of biotoxicological effects. China Geology, 4, 4, pp. 585-592. DOI:10.31035/cg2021081
- 38. Liu, Z., Bai, Y., Zhao, X., Liu, X., Wei, H., Wei, M. & Ma, Y. (2024). Contributions from typical sources to microplastics in surface water of a semiarid urban river. Journal of Hazardous Materials, 478, 135570. DOI:10.1016/j.jhazmat.2024.135570
- 39. Löder, M. G. J., Imhof, H. K., Ladehoff, M., Löschel, L. A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C. & Gerdts, G. (2017). Enzymatic purification of microplastics in environmental samples. Environmental Science & Technology, 51, 24, pp. 14283-14292. DOI:10.1021/acs.est.7b03055
- 40. Madsen, S. & Khawaja, H. A. (2018). CFD modelling of pollutant transport. Multiphysics Conference, Krakow. Retrieved from https://munin.uit.no/handle/10037/19808
- 41. Mahlavu T. O., Mpenyana-Monyatsi, L., Momba, M. N. & Mamba, B. B. (2011). A simplified cost-effective biosand filter (BSFZ) for removal of chemical contaminants from water. Journal of Chemical Engineering and Material Sciences, 2, 10, pp. 156-167. DOI:10.5897/JCEMS11.041
- 42. Microbeads and glitter among the 94,000 microplastics flowing down the River Thames every second. Retrieved from: https://www.sciencefocus.com/news/microbeads-and-glitter-among-the-94000-microplastics-flowing-down-the-river-thames-every-second
- 43. Munno, K., De Frond, H., O'Donnell, B. & Rochman, C. M. (2020). Increasing the accuracy of microplastic abundance estimates using selective fluorescent staining. Scientific Reports, 10, 23717. DOI:10.1038/s41598-020-80706-6
- 44. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50, 11, pp. 5800-5808. DOI:10.1021/acs.est.5b05416
- 45. Napper, I. E. & Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin, 112, 1-2, pp. 39-45. DOI:10.1016/j.marpolbul.2016.09.025
- 46. Obermaier, N. & Pistocchi, A. (2022). A Preliminary European-Scale Assessment of Microplastics in Urban Wastewater. Frontiers in Environmental Science, 10, 912323. DOI:10.3389/fenvs.2022.912323
- 47. Order No. Dl-313 of the Minister of the Environment of the Republic of Lithuania On the Normative document of Lithuanian environmental protection LAND 81-2006 (2006). Retrieved from: https://e-seimas.lrs.lt/rs/legalact/TAD/TAIS.281398 (04.05.2025) (in Lithuanian)
- 48. Ostadhosseyni, S., Mohammadian, A. & Pilechi, A. (2025). Solid Particle Movement Simulation in a Quiescent Container Based on Discrete Element Method Using CFDEM. In Computational Fluid Dynamics: Novel Numerical and Computational Approaches: Infosys Science Foundation Series. Springer, Singapore, pp. 1-24. DOI:10.1007/978-981-97-8152-2_1
- 49. Park, T. J., Lee, S. H., Lee, M. S., Lee, J. K., Park, J. H. & Zoh, K. D. (2020). Distributions of microplastics in surface water, fish, and sediment in the vicinity of a sewage treatment plant. Water, 12, 12, 3333. DOI:10.3390/w12123333
- 50. Pashaei, R., Sabaliauskaite, V., Suzdalev, S., Balčiūnas, A., Putna-Nimane, I., Rees, R. M. & Dzingelevičienė, R. (2023). Assessing the occurrence and distribution of microplastics in surface freshwater and wastewaters of Latvia and Lithuania. Toxics, 11, 4, 292. DOI:10.3390/toxics11040292
- 51. Pervez, R., Wang, Y., Mahmood, Q. & Jattak, Z. (2020). Stereomicroscopic and Fourier Transform Infrared (FTIR) Spectroscopic Characterisation of the Abundance, Distribution and Composition of Microplastics in the Beaches of Qingdao, China. Analytical Letters, 53, 18, pp. 2960-2977. DOI:10.1080/00032719.2020.1763379
- 52. Pervez, M. N., Keshavarzifard, M. & Moore, F. (2020). Identification of microplastics in sediments and water from urban rivers in Iran using visual classification. Environmental Science and Pollution Research, 27, 13, pp. 15454-15466. DOI:10.1007/s11356-020-08001-0
- 53. Pham, H. T., Pham, T. Q., Pham, N., Nguyen, L. H. T., Cragg, S. & Michie, L. (2024). Abundance and variation of microplastics between seasons in a tropical estuary: The case of Can Gio estuary, Vietnam. Archives of Environmental Protection, 50, 3, pp. 3-17. DOI:10.24425/aep.2024.151681
- 54. Quyen, L. D., Park, Y. G., Lee, I. C. & Choi, J. M. (2024). CFD analysis of microplastic transport over the slopes. Journal of Marine Science and Engineering, 12, 1, 145. DOI:10.3390/jmse12010145
- 55. Rowley, K. H., Cucknell, A. C., Smith, B. D., Clark, P. F. & Morritt, D. (2020). London’s river of plastic: High levels of microplastics in the Thames water column. Science of the Total Environment, 740, 140018. DOI:10.1016/j.scitotenv.2020.140018
- 56. Sand-Jensen, K. (1998). Influence of submerged macrophytes on sediment and water flow in lowland streams. Freshwater Biology, 39, 4, pp. 663-679. DOI:10.1046/j.1365-2427.1998.00316.x
- 57. Sekudewicz, I., Dąbrowska, A. M. & Syczewski, M. D. (2021). Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Science of the Total Environment, 762, 143111. DOI:10.1016/j.scitotenv.2020.143111
- 58. Siregar, L. Y., Muchlisin, Z. A., Pradit, S., Yucharoen, M. & Faradilla, S. B. (2025). Microplastic contamination in fish harvested from the estuarine mangrove forest of Banda Aceh City, Indonesia. Archives of Environmental Protection, 51, 1, pp.3-11. DOI:10.24425/aep.2025.153745
- 59. Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W., Gomes, R. L. (2020). Freshwater microplastic concentrations vary through both space and time. Environmental Pollution, 263, 114481. DOI:10.1016/j.envpol.2020.114481
- 60. Travaš, V., Kranjčević, L., Družeta, S., Holjević, T., Lučin, I., Alvir, M., Grbčić, L. & Sikirica, A. (2021). Model of microplastic particle movement in inhomogeneous and laminar velocity fields. Hrvatske vode, 29, 117, pp. 201-213.
- 61. Van Emmerik, T. & Schwarz, A. (2020). Plastic debris in rivers. Wiley Interdisciplinary Reviews: Water, 7, 1, e1398. DOI:10.1002/wat2.1398
- 62. Viršek, M. K., Palatinus, A., Koren, Š., Peterlin, M., Horvat, P. & Kržan, A. (2016). Protocol for microplastics sampling on the sea surface and sample analysis. Journal of visualized experiments: JoVE, 118, 55161.
- 63. Visuotinė lietuvių enciklopedija. (n.d.). Vilnia. Retrieved from amhttpsi://www.vle.lt/straipsnis/vilnia/
- 64. Wang, Yan, Zhou, B., Chen, H., Yuan, R. & Wang, F. (2022). Distribution, biological effects and biofilms of microplastics in freshwater systems - A review. Chemosphere, 299, 134370. DOI:10.1016/j.chemosphere.2022.134370
- 65. Werbowski, L. M., Gilbreath, A. N., Munno, K., Zhu, X., Grbic, J., Wu, T.,Sutton, R., Sedlak, M. D., Deshpande, A. D. & Rochman, C. M. (2021). Urban stormwater runoff: a major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS ES&T Water, 1, 6, pp. 1420-1428. DOI:10.1021/acsestwater.1c00017.
- 66. Yang, H. & Foroutan, H. (2023). Effects of near-bed turbulence on microplastics fate and transport in streams. Science of The Total Environment, 905, 167173. DOI:10.1016/j.scitotenv.2023.167173
- 67. Zeri, C., Adamopoulou, A., Koi, A., Koutsikos, N., Lytras, E. & Dimitriou, E. (2021). Rivers and wastewater-treatment plants as microplastic pathways to eastern Mediterranean waters: First records for the Aegean Sea, Greece. Sustainability, 13, 10, 5328. DOI:10.3390/su13105328
- 68. Ziajahromi, S., Neale, P. A., Rintoul, L. & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, pp. 93-99. DOI:10.1016/j.watres.2017.01.042
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-123b2f81-d72d-4cb9-b273-0269cecba863
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.