PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monte Carlo modelling of Th-Pb fuel assembly with californium neutron source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Developments and Applications of Nuclear Technologies – NUTECH-2017 (10–13. 10. 2017, Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper describes the methodology developed for the numerical reconstruction and modelling of the thorium-lead (Th-Pb) assembly available at the Department of Nuclear Energy, Faculty of Energy and Fuels, AGH University, Krakow, Poland. This numerical study is the first step towards integral irradiation experiments in the Th-Pb environment. The continuous-energy Monte Carlo burnup (MCB) code available on supercomputer Prometheus of ACK Cyfronet AGH was applied for numerical modelling. The assembly consists of a hexagonal array of ThO2 fuel rods and metallic Pb rods. The design allows for different arrangements of the rods for various types of irradiations and experimental measurements. The intensity of the fresh neutron source intended for integral experiments is about 108 n/s, which corresponds to the mass of about 43 μg 252Cf. The source was modelled in the form of Cf2O3-Pd cermet wire embedded in two stainless steel capsules.
Słowa kluczowe
EN
Czasopismo
Rocznik
Strony
87--91
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Department of Nuclear Energy Faculty of Energy and Fuels AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Krakow, Poland
autor
  • Department of Nuclear Energy Faculty of Energy and Fuels AGH University of Science and Technology 30 Mickiewicza Av., 30-059 Krakow, Poland
Bibliografia
  • 1. International Atomic Energy Agency. (2012). Role of thorium to supplement fuel cycles of future nuclear energy systems. Vienna: IAEA. (Nuclear Energy Series No. NF-T-2.4).
  • 2. Serfontein, D. E., & Mulder, E. J. (2014). Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk. Nucl. Eng. Des., 271, 106–113.
  • 3. Vijayan, P., Shivakumar, V., Basu, S., & Sinha, R. (2017). Role of thorium in the Indian nuclear power programme. Prog. Nucl. Energy, 101(Pt A), 43–52.
  • 4. Abdel-Khalik, S. I., Haldy, P. A., & Kumar, A. (1984). Blanket design and calculated performance for the Lotus Fusion-Fission Hybrid Experimental Devices Test Facility. Fusion Sci. Technol., 2, 189–208.
  • 5. Bhabha Atomic Research Centre. [access: 10.11.2017], www.barc.gov.in/randd/index.html.
  • 6. Oettingen, M., Cetnar, J., & Mirowski, T. (2015). The MCB code for numerical modeling of fourth generation nuclear reactors. Computer Sci., 16(4), 329–350.
  • 7. X-5 Monte Carlo Team. (2005). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. LANL. (Report LA-UR-03-1987).
  • 8. Cetnar, J. (2006). Solution of Bateman equations for nuclear transmutations. Ann. Nucl. Energy, 33, 640–645.
  • 9. McConn, R. J. Jr, Gesh, C. J., Pagh, R. T., Rucker, R. A., & Williams III, R. G. (2011). Radiation portal monitor project, compendium of material composition data for radiation transport modeling. Revision 1. Pacific Northwest National Laboratory. (PIET-43741-TM-963, PNNL-15870).
  • 10. Morss, L. R., Edelstein, N. M., & Fuger, J. (2010). The chemistry of the actinide and transactinide elements (4th ed.). Dordrecht: Springer.
  • 11. ACK Cyfronet AGH. [access: 10.11.2017], KDM. www.cyfronet.krakow.pl/portal/Prometheus.
  • 12. Martin, R. C., Knauer, J. B., & Balo, P. A. (2000). Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot., 53, 785–792.
  • 13. Liu, Z., Yang, C., Yang, Y., Zheng, L., & Rong, L. (2018). Measurement and analysis of 232Th(n,2n)231Th reaction rate in the thorium oxide cylinder with a D-T neutron. Ann. Nucl. Energy, 111, 660–665.
  • 14. Mohapatra, D. K., Singh, S. S., Riyas, A., & Mohanakrishnan, P. (2013). Physics aspects of metal fuelled fast reactors with thorium blanket. Nucl. Eng. Des., 265, 1232–1237.
  • 15. Kooyman, T., & Buiron, L. (2016). Neutronic and fuel cycle comparison of uranium and thorium as matrix for minor actinides bearing-blankets. Ann. Nucl. Energy, 92, 61–71. s bearing-blankets. Ann. Nucl. Energy, 92, 61–71.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-123692fd-f140-40cf-9942-fe5d104f55a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.